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SUMMARY

Procedures for evaluating the probability of failure of structures sub-

jected to blast and shock loadings have been established. For simple systems

that can be represented by a single-degree-of-freedom. a procedure is used

that computes the transition probabilities between states of the system using

conditional probability over calculational time intervals. The system and

loading parameters that are random must be adequately characterized and the

response space must be discretized in a reasonable way to represent various

states of response. The result is a representation of the distribution of the

response within the discretized response space. All other probability outside

the discretized response space is lost so that the first passage probability -

outside the selected bounds of response can be obtained. Various schemes to

enhance this procedure computationally have been demonstrated. The procedure

is not limited to elastic systems or to stationary input, and measures of the

response other than displacement may be considered. The first passage of

dissipated energy in an elasto-plastic system was specifically addressed and K.

the probability of failure given a random failure level has been computed.

For more complex systems that require multiple-degree-of-freedom repre-

sentation. a procedure is presented that expands the peak response in a Taylor

series in terms of the loading and system parameters. The peak response is

determined by conventional deterministic methods. The mean and variance of

the response at each location are determined by numerically approximating

partial difference terms. Given the mean and variance of the failure

criteria, a margin of survival can be computed. When the form of the

. . . .. . . . . . . . . . .
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*; distribution of the margin of survival is specified, then the probability of

survival and its complement, and the probability of failure can be numerically

, determined by integration of a multivariate distribution function.

An additional approach for complex systems has been demonstrated that

uses the relationships between parameters in a numerical sequence. The Markov

property allows the random character of the response measures and their

correlations to be computed at each time step. The result is the evolution of

a stochastic process with time.
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I. INTRODUCTION

1. MUTIVATIUN ANO OJECTIVES

Structures are designed for a variety of purposes. Some function as

weather shelters (conventional buildings) while others protect their occupants

from more severe outside environments like blast and shock (protective struc-

tures). Some protect the outside environment from their contents (containment

structures). The purposes of a structure are usually translated into perfor-

mance criteria. The goal of the structural engineer is to design, analyze,

and construct structures tnat satisfy the performance criteria. Since the

inputs, the material, and tne structural performance are not strictly determi-

nistic, tne engineer must be concerned with the prooability tnat the structure

will respond to all applied inputs within the limits set by the criteria.

This prooability is called reliability. When a structure's response is

dssignedto be far into the inelastic regime, as in the case of most protec-

tive structures, the consiaeration of reliability becomes both more important

and more difficult. The difficulty arises from the requirement to predict the

probabilistic nature of the nonlinear response.

The reliability of a structure snould be determined in any comprehensive

analysis since, in practice, most inputs and structures are random. This is

especially true for protective structures in a blast and shock environment. L-

Dynamic snack inputs are often considered random because (1) the energy

expended at the shock source cannot be directly measured, and/or (2) the phy-

sical properties of the medium connecting the snock source to the point of

interest cannot be observed. Structural systems are considered random because

.o °r
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(1) tne parameters in the constitutive laws governing behavior of the struc-

tural materials are random, and/or (2) the structural geometry does not

precisely match the intended configuration. (There is another type of uncer-

tainty that has been mistaken for randomness and that is modeling accuracy.

Model inadequacy is a systematic error and will not be directly addressed in

this study.) .

The purpose of a reliability analysis is to compute the probability of

survival of a structure. Reliability computation is difficult when the struc-

tural response is nonlinear and has large deflections. Therefore, one of tne.

ultimate goals in reliability analysis is to specify a technique for the com-

putation of reliability of structures executing nonlinear, large deflection

response.

The purpose of this investigation is to establish techniques for the

analysis of reliability of dynamically loaded structures that behave in a

hignly nonlinear way. A progression of problem complexity will cover a range

of techniques from single-degree-of-freedom (SOF) systems subjected to

stationary inputs to multiple-aegree-of-freedom (MOF) systems subjected to

transient loads. There are four requirements to these approaches. First, the -

ranaom cnaracter of te structural system must oe identified. Secona, tne

random character of tne loads must be described. Third, the random character

of the failure criteria must be establisned. Finally, the fourth requirement

is to estaolisn a method using the first three requirements to produce a

prediction of probability of failure of a structural system. Necessarily,

this fourth step uses an intermediate step of determining the probabilistic

nature of tne response and then applies tne random failure criteria to

establish the probability of failure or its complement reliability.

• 10
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2. LITERATURE REVIEW

There are several areas of research interest which have a direct bearing

on the topic under consideration, damage analysis of randomly excited systems

with random characteristics. The purpose of this literature review is to

summarize the results of some recent studies which relate to the present

topic. This literature review deals with investigations in the probabilistic

theory of structural dynamics, and investigations that characterize the appro-

priate loading and system parameters using probabilistic models. Specific-

ally, first, some texts and papers discussing the characterization of dynamic

random structural response will be listed. Next, specific studies useful in

the analysis of failure due to peak response are given. The characterization

of damage is important for structures which can fail due to damage accumula-

tion; therefore, papers in this area are discussed next. Then the studies

which take advantage of the Markov property of a structural response and its

measures will be considered. Finally, some papers which discuss the random

character of environments and structural systems are given.

There are several texts which deal with many aspects of the probabilistic

theory of structural dynamics. Among these are the books by Lin (Ref. 1).

Crandall and Mark (Ref. 2), Newlana (Ref. 3), Crandall (Refs. 4 and 5), and

Clouqn ano Penzien (Ref. 6). These books treat, in detail. the problem of

computation of response moments for structural systems. -In particular, these

bOOKS present tecnniques for finding the moments of the structural response of

linear SDF, MOF, and continuous systems. excited by stationary and nonstation-

ary random inputs. The systems considered all have deterministic, constant

parameters. Some relatively simple, nonlinear problems are also considered.

.-.,
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For example, some approximate means for computing the response moments of

nonlinear, elastic, SUF structures are given in Reference 1. These texts also K

consider such problems as the first passage problem for linear SDF systems, r

the fatigue problem, and the Markov character of the response of systems

excitea by white noise.

Many general papers broadly characterizing one or more aspects of struc-

tural response to a random input have been written. For example, the paper by

Rice (Nef. 7) treats the response moments of linear and simple nonlinear

systems. It also characterizes tne frequency of passage of a response random .

process beyond a barrier of fixed height. The paper by Ang (Ref. 8) gives a

method for computing the response moments of a linear system, and then shows

,now to use these for first passage and other computations. The papers oy

Wirscning and Yao (Refs. 9 and 10) and Bogdanoff, Goldberg, and Bernard

(Ref. 11) evaluate the response of linear structures to earthquake-type dis-

turbances and assess structural safety in light of the response. Uhlenbeck

and Urnstein (Ref. 12) and Wang and Uhlenbeck (Ref. 13) consider the Markov

character of the response of linear systems to white noise input and use this

to derive the FoKker Plancx equations for these systems. They then solve the

-oKxer ?lanck equations to obtain the transition probabilities for the struc-

tural response. Caugney (Ref. 14) derives and solves the Fokker Plancx equa-

tion for nonlinear elastic systems and obtains the response moments and

transition probabilities for the structural response. Goldberg, Bogdanoff,

and Sharpe (Cef. 15) and Toland and Yang (Ref. 16) analyze the response of

simple, nonlinear, elastic structures and evaluate response moments and first

passage probabilities. Vanmarcke, Yanev, and De Estrada (Ref. 17), Paez and

Yao (Ref. i), and Iyengar and Iyengar (Ref. 19) characterize tne response of

i2. 
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SOF hysteretic structures. They compute (1) moments and first passage

probabilities for the displacement response, and (2) the moment of accumulated

plastic strain and permanent set in the structures. Wen (Ref. 20) specifies a

means for analyzing MUJF hysteretic structures. He places each hysteretic

spring witn an equivalent, higher order, linear spring. Response moments are

then analyzed.

Investigators interested in identifying the probability of failure of a

structure often consider the first passage problem, or equivalent peak

response problem. Many of these investigations consider SOF systems. For L

example, the papers by Yang (Refs. 21 and 22), Yang and Shinozuka (Ref. 23),

Roberts (Refs. 24 and 25), Lin (Ref. 26), and Corotis, Vanmarcke, and Cornell

(Ref. 27) use various techniques to find the first passage probability for

linear, SOF oscillators. Paez (Ref. 28) specifies a technique for computing

tne peak response probability distribution for an SOc system. In a general

paper, Ang (Ref. 8) defines an approximate means for computing the first

passage probability for an MUF system. Koopmans, Qualls, and Yao (Ref. 29)

and kojwithya (Ref. 30) specify bounds on the peak response probability

distribution for linear, MOF systems.

In assessing the chance of failure of a structure, the potential for

accumulation of damage must be considered. Several authors have suggested

codes and formulas for classifying the damage in a structure. For example,

qualitative measures of structural damage are discussed in papers by Whitman

et al. (Refs. 31 and 32), Housner and Jennings (Ref. 33), Hart (Ref. 34), and

Hsu (Ref. 35). Quantitative measures of the damage accumulated in simple

structural members are also available. For example, the papers by Yao and

munse (Kef. 36), Tang and Yao (Ref. 37), Oliveira (Ref. 38), and Kasiraj and

13
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Yao (Ref. 39) suggest quantitative measures of accumulated structural damage.

Some of these measures of damage are based on Palingren-liner-type damage

accumulation laws. Some literdture surveys on the subjects of damage assess-

ment and measures of damage have been written by Yao (Refs. 40 and 41).

V in investigations into the probabilistic structural response of mech-

anical systems, researchers have sometimes taken advantage of the Markov

character of the response to white noise and filtered white noise inputs.

Notably, in studies of the first passage probability for linear system

response, Yang and Shinozuka (Refs. 42 and 43), Rosenblueth and Bustamante

(Ref. 44), Gray (Ref. 45), Crandall, Chandiramani, and Cooke (Ref. 46), and

Paez and Yao (Ref. 47) nave used tne Markov character of the response. All

these studies concern linear, SUF structures. In addition, dogdanoff

(iKefs. 48 and 49), bogdanoff and Krieger (Ref. 50), and Paez, Tang, and Yao

(Ref. 51) have shown how a Markov chain approach can be used in the failure

analysis of structural systems. When the damage transition probability matrix

is provided, and when the probability distribution of the failure-causing

damage level is known, their approach can be used to find the prooability of

failure of a structural system.

The literature review in this section summarizes investigations into

various aspects of the probabilistic structural response problem. Many papers

dealing witn the probabilistic theory of linear structural response are avail-

aole, and some of these are mentioned in review. Fewer papers analyzing the

peax response of linear structures have been written, and even fewer deal with

nonlinear structures. Also, only a few papers dealing with the accumulation

of damage in randomly excited structures are available, though much effort is

being devoted to the damage accumulation problem at this time. -
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Damage accumulation models may also be affected by the development of

more sophisticated constitutive models. There is extensive work being done in

this area of constitutive modeling of concrete soils. Generally the failure

criteria will be more adequately specified as material models are developed

that are more accurate in failure regimes. None of the probabilistic papers

reviewed considers the large displacement response of structural systems. A .

few of the papers in the literature take advantage of the Markov character of

structural response; most of these consider the linear response behavior of

linear systems. This property of structural response is important in the

development of this investigation and can be extended to systems that respond

in a nonlinear way.

The random cnaracter of the environment for pnotective construction has

been addressed in some detail, but the information is not available in the

open literature. Finally, there are some papers that report the specific

random cnaracter of some of the environment and structural system parameters.

For example, Reference 52 summarizes recent studies in the strength of

reinforced concrete.

I5
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II. STOCHASTIC ANALYSIS OF SIMPLE MECHANICAL SYSTEMS 

1. INTkOUUCTION

In this section, some SDF systems are analyzed using conditional prob-

ability approaches. Linear elastic, nonlinear elastic, and hysteretic SDF

systems are analyzed. The parameters of most of the systems considered are

deterministic constants; however, one of the systems analyzed is assumed to

have a random capacity for damage accumulation. The input used to excite most

of the systems considered here is a band-limited white noise random process.

In one instance, nowever, a nonstatlonary random process is used to excite the

system under consideration.

Several types of probabilistic results are obtained for the SOF systems

analyzed in this section. First passage probabilities for some measures of

SuF system response are computed. Finally, the failure probability is com-

puted for a system assumed to degrade following a particular damage law.

2. FIRST PASSAGE OF LINEAR SUF SYSTEMS

a. Theoretical analysis--In this section a class of first passage prob-

lems for SUF systems is solved. In order to solve the first passage problem,

tne probability that some measure of system response will pass outside a pre-

estaolisned barrier at, or oefore, a specific time will be computea. 'hen the

response level corresponding to failure in an SDF system can be defined in .

terms of one response measure and when it is deterministic and known, tne

probability of failure of an SOF system can be computed using a first passage

analysis.

The only requirements placed upon the input in the following analysis

are: (1) that it be accurately characterized in discrete time, and (2) that

16



the values of the input random process at consecutive time points be indepen-

dent. A temporarily stationary input random process implies that the input is -'

a band-limited white noise. In the analysis of SOF systems, the assumption of

a white noise input is not severe. This is true since, in general, only that

value of the spectral density of the input near the natural frequency of the

system under consideration is important in its influence on the structural

response.

First passage analyses can be executed using a Markov chain framework.

The only quantities that must be generated are the transition probabilities. k..

One means for generating transition probaoilitles will be presented in this

sect ion.

The equation of motion governing the response of a linear, base-excitea

L. SOF system Is
-- o .

y + 2;wn y + y x (1)

wnere y is the relative displacement response of tne SOF system, x is the base

acceleration, w is the system natural frequency, c is the damping factor, andn

dots denote differentiation witn respect to time.

In order to obtain the transition probabilities required for the proba-

bilistic analysis, this equation is first discretized in time using a central

finite difference approximation. The resulting approximation to the ioverning

equation is

yj+1 - 2Y. + Yj- 1  Yj+I Yj-1 + .
+I + *w' Y. = ., = , ... ,a ").

n nA "y
a tl 2A t.)L

Here tne equation of motion is written for time t a JAt, j = 0,...,N; %t is
j

te discrete time interval for the problem. Equation 2 can be solved for Yj+

and the result is

1. .... .7
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Yji (1+ n [At + At? Z ) yj + (1 can At) Yjil

j -O,...,N (3)

When the system parameters are constants and input'excitation is a

stochastic process, the SDF system response is also a stochastic process.

In this case the system response is still governed by Equation 3. When

the actual value of the input at time t. is specified and the response

values at tj. and t. are known, the the response value at t can be

approximately computed. In the following it has been assumed that the system

parameters are constants and the input excitation is a stochastic process.

It is assumed that the random variables composing the stochastic process are P,

independent at consecutive times, and that the probability distribution of the

input is known at each time ti, j O,...,N. To be consistent with standard

random process notation, the syibols denoting response and input in Equation 3 W'

are capitalized when they represent stochastic processes. The input stochas-

tic process is denoted Xj, i - 0,..., N; the response stochastic process is

Yj, J 0,...,N.

The transitional probabilities governing the SDF structure response will be

obtained using the definition of conditional probability, and Equation 3.

The probability that the structural response falls in the interval (y Y

at time tj+,, given that the response at time tj. I is Yk0 and the response at

time tj is Ykj, is given by

P Ya < Yj+lI < ybIYj- 1  YkO' YJ a Yk)

SP(Ya < (I wn AtY [ a t 2 X + t 2 -At 2) Y. + (I - Aw &t) Yj_."

(aj < (1 + (4) at-n n

YbJYJ-i 499 Y j x 0,...,N (4)

18
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The expression on the left is simply the conditional probability described

above. The expression on the right simply uses the definition for YJ+l,

established in Equation 3, in place of Yj+"-
Since specific values for the response at times' tj.1 and tj are given

in Equation 4, these values can be used inside the inequality on the right-

hand side of Equation 4. Moreover, the inequality can be solved for the

input random variable, Xj. The resulting expression is

P(Ya < J+ YbYJ-1 k Y J Yk.

- 2ykl + Yk a .

Pb2~ 1k 0 0  2

at 2 2t< <

Yb I Y 02 yk 'b Y

2 + 2t2 n -At + "n YkYJ O  YJ 1 J O...,N

* (5)

When specific values for Ya, yb, YkO and Yk, are provided, along with values

for the system parameters, then a numerical value can be evaluated for the

probability in Equation 5. This Is true since the probability distribution -

of has been assumed known.

To establish the framework for the computation of an entire collection of

probabilities characterizing the structural response, the present problem is

now discretized in response space. Let -ca and cb represent the lower and

upper first passage barriers. The first passage probability is the probabil-

ity that Yj, j 0,...N assumes a value outside the interval (-ca, cb) at or

before the time t The displacements are discretized into M equally spaced

values in the range (-ca, cb). The displacements are

F:9 .............
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yk (k -1/2) Ay Ca k- ,.,M (6-

where
.,

Ay: (Ca + Cb)/M (6a)

Now the probability that the response at tj+ I assumes a value in an,5

interval of width Ay surrounding the displacement Yk can be computed by

using Yk - ay/2 in place of Ya and Yk + Ay/2 in place of Yb in Equa-

tion 5. When the response at t is assumed to be in (y - &y/2, Yk

+ ay/2], then the response equals Yk. This assumption makes the random

variables in the stochastic process, Yj, j O,...,N, discrete valued. The

assumption results in an accurate representation of the response when &y is

small enough. Mathematically, the assumption described above is written

1YJ-~il Yk0' YJ Y)

P(k2 - ay/2 < Yj+l < Yk2  Y Yko • Yk) k kO •I,..M

(7)

The numerical values of all the transition probabilities represented by

Equation 7 can be computed. In all, there are M3 values. These probabili-

ties characterize the transitions of the response from points within the

first passage bounds at times tj. I and tj to points within the first pas-

sage bounds at time tj+j. These probablltties do not represent all the

possible displacement versus time paths that the SOF system might execute

during response to a random input. Only those paths remaining within the

interval (-Ca, cb) are represented. Those transition probabilities which

correspond to paths which originate or pass outside the first passage bar-

riers will not be used in the present analysis. To completely characterize

20



its probabilistic response, starting probabilities for the DF system under

consideration must be specified. These starting probabilities are the values

of the joint probability mass function (pmf) of the random variables Y-j and

YO. Yo is the first random variable in the response stochastic process; Y.

is a random variable defined at the arificial time t-.1 a -at. Y-1 is defined

solely to facilitate characterization of the probability distribution of the

starting velocity. The joint pmf of Y.1 and Yo defines

.o ' 1-. ' (8 )•

PY. 1Y (Yk0 ' Yk P Y-1 z kO YO a ) ko'kc a 1,••.,M (8) 

Generally, the system considered will have a zero start condition. This

means that the system starts with zero displacement and zero velocity. This

zero start condition is characterized by tf'e joint pmf

20
" y(k Yko 0 Yki = (.)

.--i IY (yk Yk 1) , '

-0 , otherwise

In situations where none of the discrete displacements actually equals zero,

the joint pmf is set to one at the argument (Yko, yk) where Yko yk= is the

realization of the random variable which is smallest in absolute value.

With the information provided in Equations 5, 7, and 8 or 9, the proba-

bility mass function of the response stochastic process can be propagated

through time. First using Equations 7 and 8 the joint pmf of Y0 andYk can be

obtained by recognizing that multiplying Equation 7 by Equation 8 will yield

the joint pmf of Y-1 , YO, and Y1. Summing over all k o will eliminate depen-

dence Y-L and yield the joint pmf of Y, and Y,. Then this result is used with

Equation 7 and the same process to get the joint pmf of YL and Y2 , etc. The

result is. at time tj.I and t j, we have the joint pmf of Yj- and Yj. But

recall that the transition probabilities, developed above. consider only those

oaths remaining 4n the spatial interval c b'7 -,n fact, the luantit'/

b....,
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J-1= Yk' J Yk ), obtained in the manner described above, defines the

triple joint probability that (1) the response at time tj_ equals Yk , and
J-1 0

(2) the response at tj equals ykz, and (3) the SOF system response has not

passed outside the interval (-c , c at or before the time t (The star (*)

superscript is included on P*(YJ-1 ' Yj a Yk ) to show that only a portion of aI

complete joint pmf is defined by the expression. The probabilistic

description of paths passing outside the barrier is not obtained.)

Summing this expression over all ko yields

= Ykl M , 0,...,N(10)

1  i kI  1 ,..., M

This is the joint probability that the response at tj equals yk, and the

system response has not passed outside the interval (-ca, Cb) at or

before tj.

Vhen Equation 10 is summed over all kj, the "no passage" probability is

obtained. If T is defined as the random variable denoting the time when

first passage of the SDF system relative displacement response outside the

interval (-ca9 cb) occurs, then

P(T1 > t) P* Yk j ,...,N
k1 =1

This is the chance that no passage of the structural response outside the

spatial interval (-Ca, cb) occurs in the time interval (0, tj]. The

first passaqe event is complementary to the event T, > tj

P(T I <tj) =1P(T(T1 > t.) , j = 0,...,N (12)

1J(1>

This is the first Passace probability function, the desired auantity.
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Note that, in order to use the present equations for the failure analysis

p of a structure, the structure must behave linearly (or nearly linearly) up to

the failure point, and it must be assumed that failure occurs due to peak

response. Moreover, the system must be accurately modeled as an SDF system.

On the other hand, the input can be modeled quite accurately. The input

can be modeled as a nonstationary random process since the transition proba-

bilities defined in Equation 5 depend on the distribution of xi, and this

distribution may vary with j.

The analysis described above is limited to the consideration of first'

passage problems where the barriers are constant and define a spatial interval

(-ca, c b). In fact, the analysis can be generalized to make the time domain

discretization vary with j. One could simply redefine the barriers at every

time t and derive the discrete displacements as in Equations 6 and 6a. This

generalization would permit the performance of a probabilistic analysis of

failure in systems where the strength properties degrade.

Since only those paths remaining between the first passage barriers are

considered in the present analysis, only a portion of the probabilistic

structural response is characterized. In fact, the entire spectrum of poten-

tial responses could be accounted for by inclusion in the analysis of two

extr3 discrete displacements; one of these would be above the uccer 'imit,

cb, and the other would be below the lower limit, -c a . All paths passing

outside the first passaoe barriers at a time tj would be 7uioed in these

two discrete displacements. The probability that a path originates outside a

barrier and then returns to a displacement value inside the barriers would be

set to zero. Using this approach guarantees that the probability mass func-

tion for displacement at a time tj would have elements which sum to unity.

The orobability that the system resoonse occuoies the disolacement value

7-"



above the upper limit, Cb, or the displacement value below the lower

limit, <a, at time tj, would be the first passage probability.

Finally, note that the probability distribution of the stochastic process

input has been left indefinite in Equation 5. In many situations the input

will be defined as a normally distributed stochastic process, and in such

cases Equation 5 will be specialized to

P(ya < "'.11 .Y bljj-1 Y~k 0' Yf Yki)

Y0 + 2
2ban 2At +'0

'n':• , I Y b 2 k + Y kY b Y k 
: ' ! :

At2  b.. 0 21 i

+ * - + W yk u j 0O,...,9N

(13)
0(-) is the cumulative distribution function of a standard normal random

variable; uj and aj denote the mean and standard deviation of the input

random process at time tj.

b. Numerical examples--A computer program which executes the analyses

developed in the previous section was written. A listing of the computer

program is included with this report in Appendix B. Some numerical examples

demonstrating the use of the computer program are summarized in this section.

The computer program computes the first passage probability function for

a base-excited, linear SOF system. The input excitation is a stochastic pro-

cess composed of a sequence of independent normal random variables. Each

input random variable has mean zero and the standard deviation can decay

exponentially with time. Zero start initial conditions for the SDF system

are assumed.

24
.. *1

~~~~. . . . . . . . . . . .. ...... . . . .. . . : qt. lii 
I _ '.



One important feature of the program is the amount of storage required

for the discrete functions used in the analysis. When an M-division spatial

discretization is used in the problem solution, N3 storage locations are

required to hold the transition probabilities of Equation 7. In addition,

M3 storage locations are required to hold the products between the joint

probabilities and the transition probabilities before the summation is exe-

cuted. (Improvements in the analytical approach which diminish the required

amount of storage are described later.) Other functions increase the storage

requirements as functions of M and M 2; therefore, more than 2M3 storage loca-

tions are needed for this program. Clearly, this limits the range of discret-

izattons that can be used in problem solutions.

,The program listed in the Appendix was actually written to solve time and

space normalized versions of the problem discussed in the previous section.

In particular, the proqram performs a natural frequency independent computa-

tion, where the probability of first passage at or before a number of cycles

of SDF system response is determined. In space, the upper and lower first

passage bounds are written as a multiple of the root mean souare (rms) value

of the stationary response of an SOF system when the input is stationary.

The first problem to be summarized is the first oassaae if a base

excited, linear SOF system. The input excitation is a stationary random

process. Specifically, it is a band-limited white noise. The standard devia-

tion of the input is listed in Table 1. The system and computation param-

eters are listed in Table 2. The first passage probability was determined

at each computation cycle and the results are shown in Figure 1. (Note

that curves relating to two examples are given in Figures 1 and 2. The

25 ,:
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TABLE 1. SYSTEM, INPUT, AND COMPUTATION PARAMETERS
FOR FIRST PASSAGE PROBLEM

* 0.08

At - w/(So)

c *~~ * at t ttoayipta b oy( rms value of system responsea b4Cw- n  to stationary input) %

M 20

" 0.714 (standard deviation of the acceleration input)

curves marked "stationary" are connected witn this example; curves marked

"nonstationary" are connected to a later example.) The first passage proba-

bility is graphed as a function of time in Figure 1. In this example, the

first passage probability, at a particular time, is the chance that the dis-

placement response of the structure has passed outside the spatial interval

(-ca, cb), at or before that time. As expected, the first passage probability

increases with time. Other examples, not sunmarized here, show that when the

barrier values are increased in absolute value, the first passage probability

function increases more slowly with time. When the barrier values are

decreased, the first passage probability increases more rapidly with time.

When the excitation stochastic process is stationary, the first passaoe

probability always approaches unity asymptotically, as time increases. The

reason is that a certain portion of the probability for response paths within -

the barriers is lost to paths outside the barriers at each step in the

computation. When the input is nonstationary and decaying, this is not

necessarily so.

27
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The second problem to be summarized also concerns the first passage of a .

base-excited, linear SDF system. In this case, however, the input is a non-

stationary random process. The input is a sequence of independent, mean ".

-'-4

zero, normally distributed random variables with standard deviations that

vary as a function of time. Specifically

-0.05 un t
0.714 e t > 0

-(t) = -- (14)
t < 0

This function is graphed in Figure 2 along with the constant value of sthn-

dard deviation from the previous problem. The first passaqe bounds were cho-

sen equal in magnitude to those used in the previous problem.

The first passaqe probability is graphed as a function of time in Figure

1. Since the input used in this problem is less severe than that used in the

previous problem, the first passage probability is lower at all times.

The first passage probability computed here does not approach the value unity

as t increases. This implies that first passage in this system response is

not certain. The reason for this behavior is that the input becomes negligi-

ble as time progresses.

c. Comoutational enhancements--The conditional probabilities that dis-

placements yk., k2 • ,..., will be realized at time tj+, given the

displacement combinations at two previous time steps, Yko and Ykj, ko,k-

a 1,...,M at times tj. I and tj can be assembled in a computer code as a

three-dimensional array. When displacements are discretized into M spatial

increments then the array becomes an M by M by M array requiring M3 storage

locations. As discussed previously, this array is treated as a tensor and is

multiolied by the state probability matrix which is composed of the probabil-

ties that the disolacements actually were at soecific discrete locations at

28
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the two previous time steps. The multiplication yields the joint probabili- 6

ties that the displacements are at three locations at times tj_, tj, and t

and these probabilities are also stored in an array of size M 3. This multi-

plication is conceptually shown in Figure 3. The next step in the analytical

process is to sum the vectors in the J-1 direction into scalars. This pro-

duces an M by M array that is the joint probability that the displacements are

at discrete locations at times t and t Note that these form the state

probability matrix for the next incremented time step (where J j-1 and J+1j).

The summing process is conceptually shown in Figure 4.

By simply noting that matrix multiplication is a series of vector opera-

tions it can be shown that only a single vector of the conditional probabil-

ity tensor need be formed at one time. The shaded portions of the conceptual

figure illustrate that a single vector of the conditional probability tensor

multiplied by the state probability matrix yields a single vector of .the

joint probability tensor. This vector can be summed into a scalar element of

the state probability matrix for the next time step (Figure 4). When this

observation is used in the computer coding algorithm, the storage requirements

for the computational process are substantially reduced. In particular, the

storage requirement is reduced from 2M3 + M2 locations to M2 + 2M locations.

When the input excitation is stationary, the conditional probability ten-

sor is composed of elements that are constant throughout the computation.

Therefore, the approach described above requires the computation of these

constants each calculational time step. This means that storage requirements

are reduced at an increase in computational time. However, the computations

performed in this project were done on a CRAY computer and the elements are

formed as a vector operation on the CRAY comouter. Therefore, the 4ncreased.
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of interest are nonstationary and the conditional probability matrix must be

recomputed each time step regardless of the scheme. Therefore, the above

change in the calculational process represents an important step in reducing

storage requirements. In fact, this general approach may allow the process

to be expanded to multiple degrees of freedom without surpassing computer

storage requirements.

Other computational enhancements are available. For example, it would be

much more efficient to compute first passage probabilities if single-step

memory were required rather than the two-step memory shown. Recall, the two-

step memory came about as a result of the central difference scheme used to

approximate the differential equation. One method to diminish the memory

would be to use an approximation that would require only single-step memory,

but the accuracy would Suffer. Another approach is to identify special fea-

tures of the response such that the memory may be reduced. An example is that, -

for lightly damped SEF systems, the response to white noise input is narrow

band. That is. given that the response is at a peak. at a given time, the time

at which it will be a minimum will be approximately one-half the natural period

of the system later. This half-cycle response information can be used to

reduce the computational procedure to single-step memory.

To demonstrate this approach the scheme -developed above-has been used to

compute the probability distributions of response amplitudes after a half

cycle of response, given that the start conditions are zero velocity and any

of the discrete displacements defined in Equation 6. These probabilities are

known as half-cycle transition probabilities, and since the analysis considers

only those paths remaining in the spatial interval (-ca, cb), these probabili-

ties have special meaning. Specifically, these probabilities define the
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chance that the SOF system response will be at an amplitude value ak at the

end of a half-cycle and that the response will not pass outside the interval

(-Cal Cb) during the half cycle, given that the response started with velocity

zero and an amplitude ak at the beginning of the half-cycle.
II

The sequence of mathematical operations used to obtain the half-cycle

transition probabilities is as follows. Set the starting probabilities,

Equations 8 and 9, to

Yk a ko k ak

-1' U f otherwise

Next, divide a response half-cycle (duration r/wn) into an integral number

of parts, n'. Apply the process n' times, starting with y y

above to get P n ( 9 Yk Finally, apply Equation 10 to obtain the

distribution of response values after a half-cycle, considering only those

paths which remained between the barriers.

\ MP ,(np k, 1,...,M (161 ""
Y'Yk 1) k2 on-Yn '  ."Y-"

0

Let Aj, J - O,...,N' be the SOF system amplitude response stochastic

process, and let Aj be the random variable in the process denoting the

response amplitude at half-cycle j. Then the half-cycle transition probabil-

Ities derived using the scheme described above are

PAj+A (akj ako) P*Yn ak, kok I (17)
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where the right-hand side is obtained In Equation 16. Since the computation

scheme has been used to compute the transition probabilities given above, it

is convenient to choose the values of ak and ak as those defined in Equation

6. The star (*) superscript is included on the expressions written above to ".'-

denote the fact that only the response paths remaining in the spatial interval

(-ca cb) are included in the computation. Paths which connect ak to ak in

Equation 17, but pass outside (-ca' Cb) during the half-cycle are neglected.

The transition probabilities presented in Equation 17 provide the sne

sort of information as provided by the two-step memory transition probabili-

ties in Equation 7. The obvious difference is that here only one memory

step is included. The need for one item of information in the memory has

been eliminated, since only the response at half-cycle points is considered.

At both the beginning and end of every half-cycle the velocity is zero;

therefore, the velocity values need not be considered. When a. two-step

memory is used, both (average) velocity and displacement at times tj. and

tj influence the response at tj+ I. The disadvantage in considering only

the response at half-cycle points is that a half-cycle duration must be

chosen for use in the computation to obtain the probabilities in Equation

17. This is chosen as r/wn for the SOF system. While this is the averAge
F

half-cycle duration for a system responding to a random input, the actual

half-cycle duration is random. Some error is committed in using one value

for the half-cycle duration,. but when damping is light (C < 0.20) the error

is small and is more than justified in reducing the memory requirements. -

Figure 5a shows the distribution of response amplitudes after a half-

cycle of response when the upper and lower limits are chosen as cb  y

and -ca u -4ay, and the starting amlolitude is chosen as 3.8 a. Also

33
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shown is a displacement path the response miqht execute during the half-

cycle. The lines on the right represent the probabilities that the various

amplitudes will be realized and the response path will remain in (-40y,

4a ), given that the starting amplitude is 3.8 cy. These probabilities form

a vector of transition probabilities given the starting amplitude of 3.8 cy.

Figures 5b and Sc show other distributions of amplitude response proba-

bilities given starting amplitudes of 2.2 ay and 0.2 ay. These graphs

present information similar to that described above.

Half-cycle transition probability vectors corresponding to each of the

beginning amplitudes can be generated. These vectors can be combined,

sequentially, based on tne starting amplituae, and the result is a transition

probability matrix. Only those paths remaining in the spatial interval (-c
a

Cb) are included. The transition matrix is defined as follows.

bb

PA .(a a, * (a IA
PAj+11A.( A A Aa 2 alj * j+IIAj 2

[j] PAjA(ala2) PAIA(21a2) PAJ Aj(aMIa 2 ) (18)

+ P

alla) (a JaM). A A(aM am)

The values of the pmf for the various amplitude states at half-cycle zero form

a vector {PQ}, where {P0} is defined as

.............................
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~A (a,)
0

IL. PA (a 2) (9

PA (am)
0

The star ()superscript indicates that only the probability of those ampli-

tude wihinthe intrva (-al Cb) are included in (p.1; therefore, the

sum of the elements in [p0} may not be one. Then the distribution of ampli-

tudes at half cycle j is

{P =j [ PA){ 0  1, ... ,NO 20

where only those paths remaining in the spatial interval (-ca, cb) are

considered in the computation.

The probability that no passage of the SDF system response outside the

interval (-Ca, eb) occurs between half-cycle zero and half-cycle jis

P(T 1 > i/w1 ) = PA, (ak) j=1,.N'()
kal

T~ is the first passage time. pA (ak) k u1,...,M are the elements in the

vector pj. Equation 74 yields the no-passage probability for the time

interval (0, wj/w1 ) In terms of this quantity. the first passage probability

can be written

P(T1  j~ 1 -P(T 1 > iti/!O 1.., (22)
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The first passage probability can be computed as a function of time when

the procedures outlined above are followed. The computations performed using

these half-cycle transition probabilities are subject to the assumptions made

in the previous section.

When the input excitation stochastic process is stationary in time, the

present technique for analysis of first passage probabilities of a linear,

base-excited SOF system will yield a computational time savings proportional

to MN/N'. This factor will be considerable when the spatial discretization

is fine (M is large) and the time discretization is fine (N/N' is large and

both analyses cover the sane interval of time). When the input is nonsta-

tionary, the present technique does not result in computational time savings.

Expansion of the above analytic approach to highly nonlinear or MDF

problems is not direct. The oasic assumption of narrow band response would not

in general be true in these cases. However. the concept of identifying special

features of the response or the computational scheme holds. For example,

because of stability, the displacement of a node in a finite element scheme is

bounded by the time step. There are certain displacements that have absolutely

zero probability of being reacned in a single time step. Therefore. it may be

possible to extend the above concept into solving the much more difficult

problems of nonlinear MOF problems.

3. FIRST PASSAGE OF NONLINEAR ELASTIC SOF SYSTEMS

a. Theoretical analysis--Once the first passage problem for a linear .

elastic SOF system nas oeen solved, it is a relatively simple matter to

extend the analysis to nonlinear elastic SUF systems. The analysis presented
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above is extended in this section to include the nonlinear elastic case. The

input used to excite the SDF system is the same as that used previously; that -

Is, the input is a sequence of independent, mean zero random variables.

The equation of motion governing the response of a nonlinear elastic,

base-excited SOF system can be written

+ 2 Wn + 2 (U-1) (23)

where y is the relative displacement response of the SOF system, " is the

base acceleration, wn is the "small displacement response" natural fre-

quency of the system, C is the damping factor and dots denote differentiation

with respect to time. This equation governs the response of a system whose

restoring force is an odd polynomial function, of degree am - 1. .

To obtain from this equation the transition probabilities required for a

probabilistic response analysis, first discretize the equation in time. When

the central difference approximations are used to replace the derivatives in

the above expression, then

-j~ 2yj + yi- +j~ 2Yusj Li 2  m"c. Y(21-1)
t ZAt n

j = O,...,N (24)

This equation governs system motion at times tj = jat, j = O,...,N. Re-

arrangement of this equation yields an expression for Yj+1"

* nAt)Y1 [2 + ((,2 . 1 m - ) -1i
' "+ t2antr - 2 yj

Yj+I (I + ¢Cwn nt '  jt I

+( - 'n At) j 0....N (25)
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When a nonlinear elastic system Is excited by an input stochastic pro-

cess, the response at t+ 1 is approximately governed by the above equation if

the system parameters are constants. To represent the approximate stochastic

relationship between input and response, the lower case yjs must be replaced

with upper case Y s and the lower case x. with X. Then using tne definition

of conditional probability, an expression for the SOF system response

transition probabilities can be obtained. That is.

P(ya y < "bl'j- 1 kO "j Yk)

(a - 2 k + Y ~ aA +
1 00 2 m0 ( Y(2-1)

Yko 2w n --- t + =n E -I-Y

At

Yb 2Yk+ k Yb"k 2 mXj i 2 € n  2a n c; kl ]

Yj 1  Y j O,...,N (26)

This expression is the nonlinear system equivalent to the transition proba-

bility expression derived in Section II.2.a for linear systems; and it is

derived in the same way and can be used in exactly the same way. It is noted

that not only stability of the finite difference equation must be properly

addressed, but that adequate time step is selected to propagate probability

outside initial conditions.

When the system response displacements are discretized, Equation 26 can

be used to obtain the transition probabilities for the discrete-time/discrete-

space SOF system response stochastic process. The assumptions and notations

regarding response displacement bounds are the same here as those used in

Section 11.2.a. The discrete displacements in (-c cb) are k 1, M..,

defined in EQuation 6. The system response transition probaoilities are
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aP(Y -ay/2 < Yjl<k + ayf2~ ji k0 Y ,.
(yk 2J+1 k 2 -1 YO i k 1) k 1k 2  1,...,M

2I
(27)

where the expression on the right-hand side is evaluated using Equation 26.

Now when the starting joint pmf of the response stochastic process is

specified as in Equation 8 or 9 and the probability computation is marched out

in time, as before, first passage results equivalent to those obtained in

Section II.2.a are obtained for the present problem. The analysis required

here is precisely equivalent to that described in Section II.2.a, following

Equation 9. Some numerical examples are presented in the following section to

demonstrate the results of this analysis.

In order to use the present approach for the practical failure analysis

of a real system, it is necessary that (1) the system be accurately modeled

as a nonlinear elastic, SDF system, and (2) failure occurs due to peak

response.

The computational enhancements discussed in Section II.2.c can be

applied in the nonlinear first passaqe analysis. The first technique dis-

cussed in that section can be applied without modification. The second corn-

putation scheme, the conversion of the response random process from a condi-

tional probability random process with two-step memory to one with one-step

memory, can be applied here, but only in a restricted way. An underlying

assumption in the establishment of that computation scheme Is that the

response will be narrow band. When the degree of nonlinearity in SDF system

response is not too great, and when system damping is light, then the (2I

response will be narrow band. When the response nonlinearity becomes areat,

the response will cease to be narrow band. Ductility ratios of greater than
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1.5 and damping coefficients of greater than 20 percent of critical would

be considered limits for these approaches.

The following analyses characterizing the response of nonlinear SOF sys-

tems will make the assumption of narrow band response and use the computa-

tonal procedures previously discussed.
I..-;

b. Numerical examples--The first computer program listed in the appen- -.

dix, and used to solve the linear first passage problems, can also be used to

solve nonlinear elastic first passage problems. Some numerical examples

demonstrating the capability of the computer program to solve nonlinear first

passage problems are presented In this section.

The computer proqram computes the probability of first passage of the

response of a nonlinear elastic, base-excited, SOF system, outside the spa-

tial interval (-ca, Cb). The response is excited by a stochastic process

input composed of a sequence of zero mean, normal random variables. Zero

start initial conditions for the SOF system are assumed.

Three first passage problems are presented in this section. The system

parameters used in Equation 23 through 27 are summarized in Table 2. The

input is a band-limited white noise whose standard deviation is qiven in

Table 2. The first passaqe probability was computed for each of the three

systems (linear, hardening, and softening), and the results are shown in

Figure 6.

4.

.. A-
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TABLE 2. SYSTEMI, INPUT AND COMPUTATION PARAMETERS
FOR NONLINEAR FIRST PASSAGE PROBLEMIS

-0.08 Linear system: m - ,cl

At - w/(5ain) Nonlinear hardening system: m - 2, C1 - 1, C2 - 1.5

M x20 Nonlinear softening system: m - 2, cl - 1, C2 - 1.5

*0.714

Ca -nb y
1:n

Softenin 000,
0.8

£0.6 Stiffening 1

S0.4

4.-

0.2 kSoftening J
Di spi acement

0

0 0.5 1.0 1.5 2.0 2.5 3.0

Time (seconds)

Figure 6. First passage probability for linear, hardening and
softening *SDF systems wn 21r.
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The hardening system tends to have lower response amplitudes than the

linear system; therefore, the first passaqe probability curve of the harden-

ing system is below the first passage probability curve of the linear sys- ,-

tem. The softening system tends to exhibit higher response amplitudes than

the linear system; therefore, the first passaqe probability curve of the

softening system falls above the first passage probability curve of the

linear system.

4. PROBABILITY DISTRIBUTION OF SYSTEM RESPONSE

a. Theoretical analysis--Up to this point only the first passage proba-

bility has been used to characterize structural response. The first passage

problem has been oursued since (1) peak response can be an important crite-

rion in predicting system failure, and (2) relatively little work has been

done toward solving first passage problems. On the other hand, much work has

been done toward characterizing the probability distribution of the overall

response of a linear system. This section modifies the general approach

outlined in Sections 11.2 and 11.3 to compute the approximate probability

distrioution of the overall response, rather than just the first passage

probaoi 1 ity.

The main reason it is difficult to comoute the probability distribution

of the overall structural response is that the procedures outlined in the

previous sections are ideally suited to tracking a portion of the response

probability remaining between finite barriers. The probability connected

with paths passing outside the barriers is discarded in succeeding computa-

tions. When the probability distribution of the overall response is of

Interest, all paths must be accounted for and none of the probability can be

discarded, no matter now great the amplitudes of the paths involved.
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Since the computational scheme used with the present approach cannot

account for all paths, especially those whose amplitudes are very large, a

compromise is made by taking two actions: (1) by setting the barriers of the

spatial interval (-ca, cb) at very large amplitudes so that the probabilities %1

associated with paths crossing outside the barriers are low. and (2) by normal-

izing the probabilities to a value of 1 at every step of the computation;

that is, by changing the probabilities, py (Yk, k referred to in

Equation 10. On the jth computation interval, the sum

M M

S=, PYY( k (28)kI =1 j-lYj~y Yki)-L

01 111 1k

is the no-passage probability through computation cycle J. If

j . (ko Yk) is modified by multiplying it by (S)i, the result is

Pyj-'y(Yjko' Ykj) (S*)-' PYj - 
1 Yj kO' Yk1)' kO9k1  1, ..

(29)
pF

The path probabilities have been modified so that the chance that the

resoonse remains in (-Ca, cb) is one. When the interval (-ca, cb) is

wide enouqh, the probability distribution of the response will be accurate.

The star (*) has been dropped on the left, above, since now the probability

for all response paths has been accounted for, thouph in an approximate way.

The distributio. of the response can now be computed at each time point,

and is obtained by summing the expression in Equation 29 over all ko.

M
M(Ykj) k Yk)

k)a ovr llk I euas . 'l"

Of course, the sum if ov ( over all k equals 1.
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The value of the above modification in computation scheme does not lie in

the capability it establishes to approximate the distribution of the response

of a linear SDF system. This capability already exists using a theoretical

probability analysis of linear continuous systems. Rather, its value lies in

the fact that the present analysis can be extended to nonlinear elastic and

hysteretic systems. This extension will be outlined in followinq sections.

The fact that the method presented above yields results corresponding to an

exact analysis will be used to check the accuracy of the present approach. .

b. Numerical examole--The analysis outlined in Section II.4.a is

checked for accuracy in this numerical example. Three numerical examples

were solved. In each example the response probability distribution was corn-

puted. The input is a band-limited white noise random process whose standard

deviation is given in Table 3. After tne response reached a steady state, the

response displacement pmf was recorded. The paraneters of the tnree problems

solved are given in Table 3. In each problem tne lower and upper spatial

limits are defined in terms of rms response, once it has reached the stationary

state.

Figure 7 shows plots of the response cdf's for each problem. Also shown

is the theoretical cdf for the linear SDF structural response. The statis-

tics of the theoretical response are available, for example, in Reference 1.
The plots show that there is reasonable aqreement between the theoretical

results and the results obtained in Section II.4.a.

5. DISTRIBUTION OF DISSIPATED ENERGY IN AN ELASTO-PLASTIC SYSTEM

a. Theoretical analysis--The analysis of structural reliability hinoes

on our ability to identify the modes of failure which might lead to the

~17
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TABLE 3. SYSTEM, INPUT AND COMPUTATION PARAMETERS FOR RESPONSE
PROBABILITY DISTRIBUTION PROBLEMS

At w /5w

= 0.714

c= 0.08

Problem 1

M a10

- b Ca 1,x =
4Cwn

Problem 2

M =20

Cb =Ca 4a

Problem 3

M =40

C b =c Ca 8

.8
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Figure 7. COF of linear system responses.
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demise of a structural system. Modes of structural failure can be qualita-

tively identified, and, to some extent, quantitative predictions of failure

can be made. But to date, the time of failure cannot be exactly predicted,

even when the response history is computed exactly. The reason is that mate-

rial behavior is random. Yet in a reliability analysis some criterion must

be chosen to judge whether or not failure occurs in a response. The charac-

terization of the criterion can be deterministic or probabilistic.

Consider the elasto-plastic SDF system. Various criteria can be used to

judge failure in this system. For example, accumulated plastic deformation

can be used to determine when failure will occur, or a permanent set can be

used as a failure criterion. The amount of enerqy dissipated by the system

can be used as a failure criterion, or a combination of these factors can be

used as a failure criterion. In the present analysis, the amount of energy

dissipated by the system is considered. There are two reasons for this: (1)

the analysis of probability distribution and first passage probabilities for

this quantity is slightly more difficult than the equivalent analysis for the

other quantities; and (2) this might serve as a damage criterion for an

actual system.

The equation qoverning motion of a base-excited, elasto-plastic, SOF

system is

+2C ;nw R(y) - -" (21)
n n

where y is the relative displacement of the system mass, x is the base accel-

eration, wn is the small displacement natural frequency of the system, C is

the system viscous dampinq factor, kR(y) is the elasto-plastic spring restor-

inq force function, k is the system small displacement stiffness, and dots

denote differentiation with respect to time. An examole )f 3 -ea'izat4 on )f

soo•



R(y) is shown in Figure 8. when the response displacement is small, K(y) is

linear; out when y exceeds tne yield displacement 0, the restoring force

becomes constant, kD. This continues until the sign of the velocity

changes. Then response starts to take place along a new straight line in the

force-displacement space. This continues until yielding occurs again, etc.

As stated earlier, the response of a linear SUF system to broad-band

random excitation is a narrow-oand random process. This means tnat wnen

the input has power over a range of frequencies wider than the bandwidth of

the SOF system and including its natural frequency, the system response dis-

plays power content mainly in the band of frequencies nearly surroundina

wn . The realizations of the response stochastic process resemble a sinu-

soidal signal with randomly varying amplitude. That is, the response dis-

plays regularly occurring peaks and trouqhs spaced at a time interval of

about w/wn. This behavior also occurs in elasto-plastic systems when

yielding is not too great. In fact, a half-cycle 'of response might be

described by the curve shown in Figure 9.

The startinq amplitude of the response is ai1 and the final amplitude

is aj. Assume that a half-cycle in the response of an elasto-plastic sys-

tern is characterized by the curve shown in Figure 9 and that this curve can be

approximated by

y(t) - (a, _, aj) - (a - cos t , 0 < t < ,/W. (32)

If the dashed line in Figure 9 represents the level at which yielding occurs

in the response, then a portion of the response during the half-cycle occurs

in the yield range.

The response can also be depicted in the elasto-olastic soring restorina

force versus disolacement space. When it is, the system executes the ,:urve

.nown 4n -'ogure '0.
p.'
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Enerqy is dissipated in two ways during the response half-cycle. It is

dissipated in the elasto-plastic spring and in the damper. The energy dissi-

pated in the spring during a half-cycle equals the net area under the force

displacement curve. This area depends on the starting and ending amplitudes,

and the SOF system parameters. The energy dissipated in the spring can be

expressed

-k(2 aj 1 ) aj<D --

E (33)
k 2 2(0- a ) + kD(aj -D) a > 0

This quantity clearly depends on the starting and endinq amplitudes and on

the system parameters. The dissipated energy can be negative, but only when

the amplitude decreases.

The energy dissipated by the damper during a half-cycle of response can

* be expressed

y '°r/u )
Y( W/Wn

EDd cyy (0 dy (34)

The response velocity can be obtained by differentiating y(t) in Equation

32, and the variable of integration can be changed in Equation 163 to obtain

w/wn
Ed c ( 2dtl J" J

EOd cf2t

CWn ,(a 3 - aji) 2/8 (35) 1-..

The energy dissipated in the damper is always positive, and depends on the

starting and ending amplitude of the half-cycle response and the system

oarameters.

.............................................-. ... . . ... •. -. - .
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In the analysis of Section II.2.- the half-cycle transition probabili-

ties were obtained for a linear system. In Section II.3.a, a method for

normalizing the transition probabilities to approximately account for all the

response paths was developed. Usinq the methods established in those sec-

tions, half-cycle transition probabilities can be obtained for a' nonlinear

elastic system, based on the analysis of Section II.4.a. These are

P~j~akak) P(A~ x a 1A x ak j= 1,...,N' (36)
JJ

Because of the normalization, the sum of - IA- (ak ak) over all k,

is 1.

According to the discussion given above, when a nonlinear system whose

force-displacenent diagram resembles that given in Figure 10 (and wnose damping

value is c) executes a half-cycle of response, it dissipates the energy given

by the sum of Equations 33 ano 35. The energy dissipated is a function of aj_,

and aj.

Let AEj be the random variable denoting the energy dissipated during a

half-cycle of elasto-plastic, SOF system response. Then

AE s (37) "-

Since the enerqy dissipated in the spring and damper depends on the amppli-

tudes aj.1 and aj, and since the amplitudes of' the response are random,

AEj is also random. The probability that the realized value of aEj dur-

inq a half-cycle of response falls within a given interval is dependent upon

the joint distribution of Aj. 1 and Aj, the random amplitudes at either

end of the half-cycle. To compute the probability distribution of energy

dissipated as a function of time, proceed in the followina manner. First,

compute the probability distribution of eneroy dissipated during e acih half-

55l
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cycle of response. Then use this information to compute the probability dis-

tribution of energy dissipated from the start of the response through the jth

half-cycle of response.

Define a stochastic process Ej, j - O,...,N' as the cumulative energy

dissipated stochastic process. It measures the energy d-lssipated by a base

excited, elasto-plastic, SOF system at half cycles indexed zero through N'.

The cumulative amount of energy dissipated through half cycle j depends on

the amount of energy dissipated at half cycle J-1 and the increment of energy

dissipated durinq the half-cycle. This latter quantity is governed by ihe

distribution of AEj, j =

To compute the distribution of &Ej, assume that during each half-cycle

of response the amplitude changes sign. This follows from the assumption of

narrow bandedness of the response. This means that in the analysis only the

possibility that the response will proceed from a trough to a peak, or from a

peak to a trough, is permitted. In Figure 9, a I- and aj will always have

opposite signs. The discrete amplitudes defining possible values of the

response are denoted ak , k x 1,...,M. All the ak are positive numbers,

and when the system goes through a trough it simply assumes an amplitude

whose value is the negative of one of the ak values. The first M, of the

values ak , k 1,...,M where M, < M, denote the response values the system

can assume where yielding does not occur. (Recall that. for accuracy, aM

must be chosen large enough so that the possibility that the response assumes

that value is small.) When amax is the largest amplitude to be represented

in the probabilistic response analysis, the discrete amplitudes can be

defined as

ak • (k a 1 a , k 1 I,...,M (37)

where
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a amax/M (37a)

Using Equations 33 and 35, compute the maximumi and minimum values the

dissipated energy can asstume during a half-cycle of response. These are

denoted emax and emi,, and are given by

k 12 1 2\ II I \
max 3  D 7 -a) + kD (a - Dp+ cwn w (aM - 3a

k 2 22emi (al (-a1)) + cwn w(al (-a,)) /8 (38b)

where the response at half-cycle J-i is required to begin in the elastic

range and can end, at half-cycle J, as high as aM.

The range of values the dissipated energy may assumne can now be discre-

tized. The discretization increment is defined

eax %ein(3a

The discrete values that dissipated energy may assumne can be defined

(k -1 C4'Ci k - ,.,v(39b)

The ek are uniformly distributed in the interval (emin, emnax).

Durinq any actual half-cycle of response, the energy dissipated assumes

one value in a continuous range of values. Using the present computation

scheme the range of values is (emi,,, emax). Assume that when the energy

dissipated during a half-cycle of response. falls in the interval (ek-

ae/2, ek + ae/2), it can be accurately reoresented by ek. The accuracy

of this assumption is good when M' is large enough.

Now recall that the amplitude transition probabilities (Equation 35) were

obtained using the same type of discretization described above. The discrete

amolitudes are ak, k and the amplitude increment is ia. AWhem !he
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response falls in the interval (ak - Aa/2, ak + aal2), assume that the

response is ak. For each pair of amplitudes -ako, ko - 1,...,Ml at half-

cycle J-1, and ak,, k, - 1,...,M at half-cycle j, compute the range of pos-

sible energies dissipated durinq the half-cycle; the starting amplitude is

ak ; the ending amplitude is in the range (ak- Aa/2, ak, + Aa/2). The

range of energy dissipated values is computed using Equations 86 and 88 and

can be denoted (em in  emax where•kok ,,  kok! ..

em k0  1 1 -aca) 2 8 ak < D.
k0k1  = D ( 2 - a2 ) + kO akl ....-.+...ir a ~ 2- ak .7a/ k n k ,, kk

0L

ak > (40a)

aD +- ak;2 D. + c a 2 )2/8

a > D (40b)

The range of values (era in  em ax ) will not, in general, equal any one of the "

ranqes (k - Ae/2, ek + Ae/2), k = ,...M'. The probability PAIA

(akak)7 of Equation 89, can be associated with the chance that the"

response will start at an amplitude -ako (taken from one of the values :::::

0L

-ak, kc * 1,...,M1 ) and end at an amplitude ak , with energy dissipated fall- -..-

maxl

ing in the Interval (e t  e a  ). --.'

k ko], 2o2

Based on the above arguments, the Joint, conditional mf of amolitude and

energy dissioation increment can be aeveooed. Let th.-n-t-':
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ko = 1,...,MI

k2  ,

denote the conditional joint pmf of AEj and Aj, given Aj. 1 . That is
a1 -a P aEj e Aj a'Aj-I - -ak T!:

P A jIA ( ek2 ' ak ak 0 ) k2, = ak k ,-.

k0k0 - 1,...,M1 --

k 2 .

kj I,..., "(41)

The values of the pmf are obtained in the framework of a diqital proqram com-

putation scheme as follows. (1) All the values of the pmf, pAAI

(ek. ak ak ), are set to zero. (2) Set ko z 1 and k, = 1. (3) Compute

m m min max n
(erin e x ) (ell ell and p (aIa pA (aa,) usina

•k 1rak jJjIk i n _mx A-19.-

Equations 40 and 36. (4a) When the interval e"", ell ) is completely

included in one of the intervals (el - Ae/2, e. + ae/2), then increment the

pmf pa~AjA1 .(eL, ajai) by the amount PAJA (aja,). (4b) When theP rain A/tax

interval (ell , e11 ) overlaps two or more enerqy increment intervals, say

(ei - ae/2, ei + ae/2) throuqh (e2 - Ae/2, e + Ae/2), then the probabil-

ity, PA jA-(a,-a,) is divided into fractional parts where the fractions

are linearly proportional to the fractions.of the intervals, (e -ae/2,

eIl + ae/2) through (e2 - ae/2, et + ae/2), spanned by the interval

(em1n, eri ) These fractions of PA IA (ak,.Iak) are used to increment

the values P. AjlAj.(e ., akli-ako) through paEAjJAj l (e ', aki-ak ").
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(5) k, is incremented by 1. and then return to step (3) until k1 = 1. (6) k0

is incremented by 1 and then return to step (3) until ko a .

Assumie that the starting probability distribution of response amplitudes

at half-cycle zero is available. Half this distribution is denoted pA0Cak), ~ .~Ik - 1,...,M. Only half the distribution is represented since ak > 0, k
*11 .M. The starting pmf, and all other pmf's, will be assumed symmetric

about the zero amplitude, in what follows. In most cases this pmf will be

• .l

zero fork > M1, and generally t .

10.51

~A(a) (42)

PA k-

This is the zero start initial condition. rwo options are available for

definition of the starting pf, and the formula given above represents one

option. Half the probability can be accounted for, as it is in Equation

42. In this case, the marginal pmf's and joint pmf, to be computed later in

this analysis, represent the chance that specific amplitude and energy

dissipated combinations will be realized during a given half cycle. Only the

probabilities for amplitude combinations that are negative at the start of

the half cycle and positive at the end will be computed. Because of synmme-

try, the probabilities of amplitude combinations which have positive ampli-

* tudes at the beginning of the half cycle and negative amplitudes at the end

can be found from those computed. Since the energy dissipated during a

response half cycle depends only on the amplitude change, 4Ej remains

unchanged when the signs on the starting and ending amplitudes are both

changed. (See Equations 33 and 35.) The second option for definition of the

starting pmf accounts for all the probability by changing the value, 0.5 to

1.0 in Equation 42. In this case A0 must be replaced by its absolute value,

As because of symmetry. Then, in later computations the marOinal pmf 's
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and joint pmf's involving lAjI are computed. As in the previous case,

&Ej is not affected.

The joint pmf of AE1, the increment of dissipated energy during the first

half-cycle, and A0 and A1 , the amplitudes at the beginning and end of the

first half-cycle can be obtained using Equations 41 and 42."

PaE 1 e k~ a k,9 a k)= P&EA A 0A(e k2  a k -a k ) PA0 ~a k

k = 1,...,M I  -

01
k 1,...'.

k2 - 1,...,M' (43)

Take PAo(-ako) = PAo(ako), kO = 1,...,M l because of the symmetry assumption.

Only half the complete joint pmf is represented here, but because of the

symmetry assumption the joint pmf evaluated at negative values, -ako, Is

the mirror image of that evaluated in Equation 43. Specifically,

ko  1't ... ,M :..

*PEAOA(ek29 ak, "ak,) PE AOA (ek' -akO, ak)' k,

k2  ,

(43a)

The marginal pmf's of AE, and A, can be obtained by sznming out depen-

dence on ko and kj, then ko and k2, respectively.

M1 M"-

P.eak = % EA 0A1 ek e ) , k1  = 1,...,M' (&4)
k..2) k 21 1 2k ek

0 61

MI M1 i
P~~e e' e u k, = 1,...,M (45).-'

611
.2-



When Equation 45 is summed over k,, the result is the value one-half. The

reason is that half a symimetric pmf is represented. When Equation 44 is .

summed over k2, the result is one-half. The reason is that, even though all

the energy states are represented (see Equations 39a and b), only half the

paths leading through these energy states are considered. This fact is

accounted for by the factor of 1/2 on the left-hand side of Equation 44.

In the computation framework established here it is not feasible to allow

the system to execute responses where yielding increases without limit.

While the transition probabilities established in Equation 41 can account for

this, the computer storage required to account for all the paths would be

prohibitive. Therefore, a response collapsing procedure is established

here. This procedure concentrates the probability associated with all those

amplitudes ak, k > M1, into pA) (aM). That is, r
IM

)ko=M 1  ,(ak ) k M.k MM A kOM

A k (a ) (46)
I PA (ak) , k < M

The (m) superscript refers to the fact that the omf of A, has been modified. ..

At this point the modification destroys the accuracy of the true ampli-

tude pmf at half-cycle 1. Indeed.'this change affects all future amplitude

probability computations. However, the modification does not affect the

accuracy of the increment in energy dissipated probability computations. The

reason is this. Once a curve governing response in the SDF system spring-

force-versus-oisplacement diagram has oeen identified, the only quantity

which affects the energy dissipated durina a half-cycle (besides the input

and system parameters) is the starting amplitude on that curve. For examole,
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consider Figure 11. If, at the end of a particular half-cycle of response,

the system has reached the yield threshold, but has not yielded, then durinq I

the next half-cycle the response will be governed by curve No. 1. If. on the

other hand. yielding occurs at the end of a half-cycle, then the next half-

cycle may be governed by curve No. 2. If the system which yielded is excited

by the same input as the system whicn did not yiela, then the change in dis-

placement will be the same in both systems, and both systems will dissipate the

same amount of energy during their response half-cycles. This is shown in in

tne figure. The conclusion is that, when a system has yielded during a partic-

ular half-cycle of response, it is accurate, as far as energy dissipation

calculations are concerned, to treat that system as though it started its next

half-cycle of response from the yield displacement. This is precisely what the

modification of Equation 46 does.

Now using Equations 41 and 46 the joint pmf of AE2, A, and A2 can be

computed.

k0 =

PeEAAek ak. e a (-a k 1...'

(47)-

This can be used to obtain the marginal pmf's of AE2 and A2 . Then the mar-

ginal pmf of A2 can be modified as in Equation 46. Then the joint pmf of

a 3, A7 and A3 can se obtained, and so on, until all the pmf's P&E(ek),

J 1 I,...,N', k 1,..,M' are known.

Finally, the specification for the stochastic process Ej j =0,.,N-,

can be formed using the pmf's" pAE(ek), -k 1,...,M-. E is
3o

the energy dissioated by the system throuan half-:ycle I. E, j ... .'-
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is a Markov process. The energy dissipated by the system through nalf-cycle J

depends only on the energy dissipated through half-cycle J-1 and the energy

dissipated increment in the half-cycle between J-1 and J.

Let p E 1,klko'J ...,9NI, ko, k, I ....Mot, be the conditional

pmf for the random process, Ej, J - 0....N', defining transition probabili-F

ties between states of dissipated energy. Let

Mo No x M' (48)

and

where ae is defined in Equation 39a.

Then the transition probabilities are defined

j = 1,..,N'(50)

_E.c.Ik PE(k k k0,k1  1,...,M-"

That is, the chance that the dissipated energy state changes from to

in one half-cycle equals the chance that e -e units of energy are dissi-

pated during the jth half-cycle. 1  kL

Let PE (Ck), j 0,..., N' k =1,... ,M", be the pmf of enerqy dissipated

through the jth half-cycle. Then the joint pmf of energy dissipated throuqh

the j-1st and ith half-cycles is obtained following Equation 34a; it is

PJ1E eksckl ~ lj, lfko) Pj1 ok 1..M- (51)

The marginal pmf of energy dissipated through the jth half-cycle is

/Metj= 1,...,N'(2
PE Iek) / & k= PE Ejko k l I . 1,.
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Or by combining the operations in Equations 51 and 52, the marginal pmf of E.3

from the pmf of E.1 can be obtained
I-1

=1 IEj.i kilckI) = (..0)

By specifying the starting pmf of Eo; one can obtain the pmf of Ej for

any j 1,...,N', through successive applications of Equation 53.

Note that no assumptions regarding the stationarity of the input signals
has been made in the analysis of this section; therefore, the probability

distribution of the energy dissipated response excited by a nonstationary

input can be computed using the technique developed above. Further, energy

dissipation caused by inelasticity in the spring and viscous damping need not

be considered simultaneously. No feature in the theoretical development of

this section precludes the consideration of energy dissipation due to one

source only.

When the pmf, PE(ck), is summed over all k, the result will always be a

value of 1. The reason is that all potential values the dissipated energy

might assume have been approximately accounted for. The definition of emax

and emi n in Equations 38a and 38b, and use of these in Equation 39a and 39b,

the definition of the dissipated energy states, has guaranteed this.

The accuracy of computations performed using the approach specified above

will improve as the values of M, MI, M' and aM are increased. The first

three values involve the fineness of the discretization; the last value is P

related to the displacement Interval where response paths are accounted for.

b. Numerical example--This section gives a numerical example demonstratin-

use of a computer program which implements the analyses presented in Section
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II .5.a. In this example the probability distribution of energy dissipated

up to a particular time is computed as a function of time. Specifically, the

pmf, PE (ek)s i O,...,NO, k a 1,...M", is computed at the half-cycle points

of an SDF system response. The input used to excite the system is a band-

limited white noise. The system computation and input parameters are listed

in Table 4.

TABLE 4. SYSTEM, COMPUTATION, AND INPUT PARAMETERS FOR
ENERGY DISSIPATED pmf CALCULATION

at = W/(SWn) 6.28

= 1.0

=O0.05 k= 39.5 D =10.0

M =18

M, 12

MI = 20

MOO= 1000

aM - 15.0

N = 50

The response pmf was computed at a time interval of ten half-cycles. The

resultinq pmf's were interpolated so that the results could be displayed as a

sequence of pdf's. The results are shown in Figure 12. Each pdf is plotted

in a vertical plane of pdf ordinate versus energy dissipated.

At time zero the system starts with no energy dissipated, so the first

pdf is a delta function. As time progresses, the chances for increased

amounts of dissipated energy increase, and the pdf's of Ej spread. The

pdf's shown in Figure 12 resemble exoonential odf's, and simple computations

show that the results are nearly exoonentially distributed.
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The mean and variance of each pdf were evaluated by the computer pro-

gram. The graph of the mean value of energy dissipated versus time is plot-

ted in the horizontal plane of Figure 12. This curve increases with time and

appears to be in a condition of constant (straight line) increase past half-

cycle 30.

A listing of the computer proqram used to perform this numerical example

is given in the Appendix.

6. FIRST PASSAGE OF DISSIPATED ENERGY IN AN ELASTO-PLASTIC SYSTEM

a. Theoretical analysis--The analysis of Section II.5.a pointed out

that the sun of the marginal pmf of dissipated energy, PE (ek), J - O,...,Nl,

k - 1,...,M", over all k equals 1. because all the values that dissipated

energy can assume were accounted for. Also pointed out was tnat the sto-

chastic process tracking dissipated energy is Markov. The first passaqe

problem for energy dissipated in an elasto-plastic system can be solved by

taking advantages of the Markov property and rearranging the computation

scheme to permit the escape of some response paths past a barrier.

Since the stochastic process tracking dissipated enerqy is Markov, its .

transition probabilities can be arranged in a transition matrix defined as

follows.

PEj+1E(elI) P 3jEj(+2Jl) ... PE + (IE(CM,IC1)

PEJ+I l(ClIc2) PEj+ IE( (c2le2) ... PEj+ Ej(M c2)

[Pj+1]

PE J+1JE €i 1cM,,) PEJ+JIE i(E2 I-EM") PE + 1 E (MOOCM ". ) .

j -o .. ,'' i (54) :-
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. Each of the elements in the. matrix is defined as in Equation 50. And when

the pmf of dissipated energy is arranged in vector form,

j (553

Through specification of the pmf of dissipated energy at half-cycle zero, k.

denoted lPol, one can obtain the pmf of dissipated energy at half-cycle j.

This is
I,-.- .

j _ P, {po1 (56) 

(Details of this general procedure are given in Section II.2.d.)

The computation procedure outlined above can be modified to yield first

passage probabilities. Let EPJ+1 ] denote a square submatrix of [Pj+] taken

from the upper left corner. Then

PEJIE (CIl ) PEJE(c2 1) "'" DEJE(cLIl)

PEj+JIE (CI 2) PEj+I iE(e2Ic2) ... PEj+IEj(cLlc2)

L PEj lIEj(C i L) PEj+JIE (c2IcL) PEJ+ IEj(LIL)

i - O,...,N'-l (57) "[)'

where L < M. And let Ipoj denote a vector of elements to be operated on by

the [P*I. The elements in ipal are the probabilities that Eo occupies the

states el through eL. .,

-' (P 0 el) P E ... P~n(EL)T,) :::

70 L

"-* .i'



The star (*) superscript is attached as an indicator that the transition and

state probabilities correspondinq to the entire ranqe of realizations are not

included in (P,+1] and (pal. A vector {pjl can be obtained through succes-

sive operations of [Pk) on {Pot This is

.1 T F *1 (59)

The elements of {p } represent the probabilities that particular states in

the energy dissipated range, cl through 9L, will be reached following paths

that do not pass outside the level 6
L.  Therefore, at half-cycle j, the no

passage probability of dissipated energy is

P(T1 > j:/en) p (k) , j = 1,...,N' (60)
k-1 j

T, is the random variable denoting the time at which first passage of the

dissipated enerqy response passes outside the level eL. w/wn is the

duration of a half-period of the system under consideration. PE(Ck) is the

kth element in the vector *1

The first passage event is the complement of the no passaae event; there-

fore, the first passage probability is given by

P(T1 5J/w n) 1 - P(T1 > jw/wn) , j = I,...,N' (61)

This first passage probability is a nondecreasinq function of j.

- As long as the input excitinq response in Equation 31 has nonzero mean

square power, the first passage probability will increase as a function of

time. This corresponds to a feature in the matrix of Equation 57 where the

rows ao not aaa to 1; that is, the probability that the response starts at

any point in the range s, through sL and passes to another point in the same
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range is lower than 1. The remainder of the probability corresponds to paths .

which pass outside the barrier L .

The analysis done in this section is restricted by the assumptions used

in obtaining the elements in the transition matrix, Equation 54. Most

important, the response is assumed narrow band; therefore, the analysis is

accurate only for systems in which large amounts of yielding cannot occur

during most half-cycles. First passage of energy dissipated due to the non-

stationary response of an SOF system can be accounted for, though, since the

probability distribution of energy dissipated in nonstationary response can

be computed using the underlylnq approach of Section II.5.a.

b. Numerical examples--This section summarizes some numerical examples

demonstratlnq the use of a computer program which implements the analysis of

Section II.6.a. The computer program used here involves only slight modifi-

cations in the computer program of Section II.6.b; therefore, it is not

listed in the Appendix. The first passage probability functions are computed

for three cases. In each case the input excitation is a band-limited white

noise stochastic process. Three barrier levels are chosen for analysis. The

system, computation and input parameters are listed in Table 5.

The first passage probability was computed at an interval of every ten

half-cycles. The first passage probability results were interpolated so that

they could be displayed as continuous curves. These are shown in Figure 13.

A zero start condition was used on each first passage computation; that is,

the system was started with zero energy dissipated. For this reason, each

curve starts at zero. As time progresses the chance that the response passes

outside the barrier increases, so the first passage curve increases. As time

goes to infinity these curves approach one since the input is stationary;

excursion if any finite barrier is assured as time qoes to infinity. As the
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TABLE 5. SYSTEM, COMPUTATION, AND INPUT PARAMETERS FOR FIRST PASSAGE
OF DISSIPATED ENERGY CALCULATION

At a u/(5wn ) n 6.28

a3X - 1.0

- 0.05 k 39.5 D 10.0

M 18

14- 12 M' =20

aM 15.0

N' = 50

Case 1 L - 5 65 - 1400

Case 2 L a 10 CIO - 2800

Case 3 L- 15 15 4200

barrier height is increased the first passage probability tends to increase

more slowly with time.

7. PROBABILITY OF FAILURE

a. Theoretical analysis--The reliability of a structure is the probabil-

ity that it will perform satisfactorily over a preestablished period of

time. The requirement for satisfactory performance implies that some crite-

rion has been established to judge whether or not the response is accept-

able. Failure of a system to satisfy the response criterion is called struc-

tural failure and the probability of failure is I minus the reliability.

In many situations failure occurs only with the physical collapse of a struc-

ture; and in such cases the reliability is the chance that no collapse will

occur during the design life of a structure. When structural collaose is the

failure criterion the reliability is difficult to estimate accurately since i
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structural analysis predicting collapse must be executed in the reliability

analysis. For this reason structural reliability is often simply bounded or

estimated approximately, using approximate nonlinear structural analyses

where necessary.

There are three features which may lead to randomness in the dynamic

response of a structure. These are randomness in (1) the input, (2) the

mechanical properties of the structural material, and (3) the geometry of the

system under consideration. When the material properties and geometry of a

structure are practically deterministic, then only the input is random; and

the reliability analysis can be reduced, in many cases, to a first passage

analysis like the one presented in Section 11.2 or II.3 or 11.6. The

deterministic failure level of the system is simply chosen as the first pas-

sage barrier, and the failure probability is computed as the first passage

probability.

In a more general situation the mechanical properties of the structural

material are random and no single first passage analysis can be used to

estimate the failure probability. Rather, a combination of information

regarding the probabilistic character of the material must be used with

information on the probabilistic character of the peak response to estimate

the chance of failure. Specifically, through testing, the conditional proba-

bility of failure of a material can be developed. The probability of failure

is conditional on some measure of the load on the material. For example,

when a test specimen is loaded monotonically the probability of failure is

conditioned on peak stress or peak strain. When a test specimen is loaded

cyclically the probability of failure may be conditioned on a measure of

accumulated plastic deformation, or energy dissipated, etc. The following

material considers this problem for SDF systems. The response of an elasto-

plastic system is considered, and the system under consideration is assumne.
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to have a random capacity for dissipating energy. Through testing, the prob-

ability of failure can be specified, conditional upon the amount of enerqy

dissipated in the system. When the letter F is used to denote the failure r

event, the conditional probability of failure is denoted P(FIEc -), e >

0. Ec denotes the total energy dissipated over the entire duration of the

system response, and the assumption is made that the conditional probability

of failure is known for all realization of dissipated energy, e. When the

probability distribution of E is specified, then this can be used with

ccP(FIE c ) to find the probability of failure.

The quantity Ec, whose probabilistic character needs to be specified, is

the peak value of energy dissipated over the entire response duration. The

cdf of this quantity can be found in terms of the first passage probability

for dissipated energy obtained in Section 11.6. The following material

slightly changes the notation established in Equations 60 and 61. Let T

denote the random variable representing the time at which first passage of

the dissipated energy barrier level e occurs. If Tc is the duration of the

response, then P(Te < TC) is the probability that first passage beyond

the barrier c occurs at or before Tc, and can be found from Equation 61.

But this probability can be viewed in another way. It is the chance that

the peak value of energy dissipated in the time interval (0, Tc) surpasses

the value e. That is

P(E > e) = P(T < T) (62)
c e-c

The complement of the event whose probability is described on the left-hand

side is that the energy dissipated is less than or equal to E; therefore,

P(Ec < ) •1- P(T < Tc) (S3)

c-, .-cThe function on the left can be computed through reoeated application of the
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first passage analysis. That is, a first passage analysis can be run through

time T , for various values of the barrier level, e; in this way P(Ec _< e)

is evaluated at a discrete set of values.

The pdf of Ec can be obtained by differentiating the cdf of Ec, Equa-

tion 63, with respect to e. The result is

d
fE P( < , > 0 (64)

The product, fE (e) de, denotes the probability that Ec has a realiza-

tion in the interval (e, e + de); therefore, the joint probability that sys-

tern failure occurs and the dissipated energy lies in the interval (e, e + del

is given by

P(F, < Ec _ e + de) " P(FIEc= €) fEc(¢) de C > 0 (65)

The probability of failure can be obtained by integrating out dependence on e

in the above expression. The result is

P(F) fP(FIEC f, ().dc (66

The above expression can be discretized so that the discrete nature of the o

cdf of Ec can be directly accounted for.

The computations performed above assume that the SOF system will fail due

to the dissipation of energy in the system. In fact, failure may be more

strongly related to another measure of structural response or a collection of

other measures. If the conditional probabili'ty of failure given these other

measures of response can be specified, either based on experiments or theore-

tical considerations, and if the probabilistic character of these other mea-

sures of structural response can be obtained, based on the type of analysis

given in this report, then the probability of failure can be specified using

the same general approach developed in this section. In view of this, the
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failure analysis presented in this section is simply meant to demonstrate a

technique which takes into account the randomness in the excitation and the

system characteristics.

b. Numerical example--This section presents a numerical example demon-

strating the use of a computer proqram which implements the failure analysis

of Section II.7.a. The computer program uses the first passage analysis of

Section II.6.b to develop the peak response cdf; therefore, the input used

in that section is In effect here. That is, a white noise is used to excite

the system. The time duration of the input and response are taken to be 50

half-cycles of the response. The cdf and pdf of Ec are evaluated at that

time. The system, computation, and input parameter used to obtain the cdf of

Ec are given in Table 6.

TABLE 6. SYSTEM, COMPUTATION, AND INPUT PARAMETERS

FOR PROBABILITY OF FAILURE CALCULATION

At w/(StWn)

1.0

;-0.05 k - 39.5 0 = 10.0

M 18 M - 12 M'-20

aM - 15.0

N' 50

cdf of Ec evaluated at

e3 - 840 AE 280

e4 - 1120

5  1400

6- 1680 r

e7 a 1960
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Part of the cdf of Ec was computed at increments graphed in Figure 14.

The cdf was computed at increments of dissipated energy equal to 280. The

cdf is shown as a step function. The pdf is estimated by differencing the

cdf. The increments obtained by differencing the cdf are shown in Figure 15.

In order to compute the failure probability, the conditional probability

of failure given the level of dissipated energy must be known. In this exam-

ple it is assumed that the conditional probability of failure is that shown

in the graph of Figure 16. The dissipated energy increments upon which the

failure probability is conditioned were chosen to correspond to those used' in

obtaining the cdf of Ec . This was done for convenience, though any discre-

tization in the conditional failure probability function could be interpo-

lated to make it compatible with the increments in the cdf of Ec .

The discretized form of Equation 66 used to obtain the failure probabil-

ity is

1 1P(F) = .k= P(FJE c  7 (Ck + [k+1)) EP(Ec < ck+l - P(Ec < £k)] (67)

where AE is the dissipated energy increment ek, k = 1,...,M 2 are the dissi-

pated energy levels where the cdf of Ec is computed, and M2 is the number

of dissipated energy values where the computation is carried out. in the

oresent example, the probability of failure assumes the value

P(F) - 0.0(0.6057) + 0.2(0.1979) + 0.5(0.1031) + 0.8(0.0532) + 1.0(0.0401)

= 0.1750 (68)

This example shows that it is necessary to obtain the cdf of Ec over

these values only where the conditional probability of failure is greater

than zero ana less than 1. None of the energy dissipated quan-tities can lead

to failure when the conditional probability of failure is zero, and all tne

energy dissipatea quantities lead to failure wnen tie conditional probaoiliv

of failure is 1.
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IFigure 14. Partial cdf of energy dissipated during
50 half cycles of response of an elasto-
plastic SDF system.
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Figure 15. Approximate partial pdf of energy dissi-
pated during 50 half cycles of response
of an elasto-plastic SOF system.
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Figure 16. Conditional probability of failure of an
elasto-plastic SOF system given dissipated
energy.
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In summary, this section has shown an approach to the prediction of reli-

ability of SUF systems that are nonlinear and subjected to both stationary and

nonstationary loads. Various measures of response have been considered and the

failure probability has been computed for a system with a random failure level

of dissipated energy.
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III. FAILURE ANALYSIS 0F pULTIPLE-DEGREE-OF-FREEDOM SYSTEMIS

1. INTRUDUCTIUN

In the previous section, a probabilistic analysis of single-degree-of-

freedom (SVF) systems was presented. The extension of the problem to

multiple-degree-of-freedom (MUF) systems is not trivial. Recall that one of

tne disadvantages of the previously presented SLF approach was the storage

requirements for the state probabilities and the transition probabilities.

Even when some memory requirements were reduced by additional computational

effort, tne memory storage was large. Any solution for MDF systems should

include considerations for a reasonably large number of degrees of freedom (at

least several nunared). This constraint has led to an alternate procedure for

predicting the probability of survival of structures excited by highly tran-

sient loads, such as blast and shock.

The survival probability of a structural system subjected to blast and

shock loads can be computed using the basic elements described in the opening

section of this report. The random character of the structural system and of

the loadings must be known. A mathematical procedure must be developed that

models the system so tnat the random response is predicted. The failure level

must be characterized and, finally, intersection of response and failure must

be integrated into a probability of failure or its complement, the probability

of survival. This section presents an approach using these elements for

inelastic systems that are represented by MDF solutions that have some chance

of failing at any of a number of locations.

2. THEORETICAL ANALYSIS

a. Failure at a single point--The survivable probability of a blast-

excited structure can be computed by a four-step procedure: (1) A numerical

scheme for computing the response at various locations on an inelastic
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structure is selected. (2) The parameters of the input and the structure are

characterized probabillstically. (3) Peak responses are expanded in a series

involving the input and system parameters, and the mean and variance of the

peak response at each location are determined. (4) Margins of survival are

established and used to compute the probability of survival. Each of these

steps will now be described in detail.

The equation governing the response of an MDF structure can be written

m] Iz + JR(z)} = IF(t)} (69)

where [m] is the mass matrix, jz} is the displacement vector, dots indicate

differentiation with respect to time, IR(z)} is the restoring force vector,

ana F(t)k is the forcing vector. When the system characteristics are random,

the parameters governing the behavior of tR(z)} are random variables. When

the input is a random process, the parameters of the forcing vector are random

variaoles.

Let 8., j-1, ,,,, m, denote the random structural parameters. Let ,"

j=m+1, ***, n, denote the random input parameters, then the response at a

point, i, on the structure is a random process and can be expressed

zi z (t, , o.., $n). A number of techniques can be used to compute thisi n
response when the O . j=1, o., .n, are specified. In reality most dynamic

problems do not explicitly solve the system of equations shown in Equation 69,

but rather the system is spatially discretized in some way and the equations

of motion are solved on a cell-by-cell basis in a sweep through the system for

a small time step. Simplified approaches can be used as well as complex r

finite element solutions.
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The maximum response in time at the ith point is

."
Zi(81, ' tn) m Izi(t, 01, **, 00 (70)

Note that although Zi and zt represent displacement here, they could represent

any measure of the response and its maximum. Let and o2 represent the mean

and variance of the random variable tis J-1, ..., n, and let 0jk be the corre-

lation coefficient for a and 0k. The function Z can be expanded in a Taylor

series about the means of the parameters.

- Zt az1 + .... (71) .

where {u} is the vector of mean values of the Oj,-l, 00-, n.

The mean and variance of the peak response can be computed approximately

as

E[zi] ; Zilu } (7 2a)

V(Z1) n n aZ1  Zi=1 k-I. 3 j (ul a8k {u} Pjk j "k (72b)

These expressions are approximate because higher order terms in the series

expansion have been neglected. These terms can be retained when necessary.

Several appropriate evaluations of the importance of the higher order terms

can be considered. If higher order terms domnot significantly change the

solutions, they need not be retained. Also if'the peak response function can

be easily differentiated, either analytically or numerically, the slope,

curvature or higher order differentials can be evaluated on either side of the

mean to detect changes. If the changes are zero or small, no further terms

should be necessary. An equivalent approach is to examine the order of the
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peak response function in a reasonable range of the mean determined by the

failure level.

Structural failure is assumed to occur when the peak response at any

single point exceeds the failure level. Let L. be the random variable denot-
- -

ing the failure level at a point i. Let E[Li] and VCLij be the mean and vari-

ance of Li, Assume that Zi and Li are independent. A margin of survival at

point i, Mi, can then be established as

Mi = Li -Zi (73)

This margin has mean

E~mi] = ECLi] - E[Zi] (74)

ana variance

V[Mi] = V[Li]+ V[Zi] (75)

Failure occurs when the margin of survival is negative and, therefore, the

probability of survival is-

Ps= P(Mi 0 0) (76)

This can usually ue evaluated using E[Mi] and V[Mi] when the distribution

of Mi is specified. When Zi and Li are either normally or lognormally dis-

trioutea, P can easily be determined.
S

A development analogous to the above can be executed when Z is any mea-

sure of the s.ructural response.

The following numerical example considers the case where tne potential

for failure exists at only one point on a structure.
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b. Numerical example--A laterally supported vertical cylinder composed

of two materials can be simply modeled as a set of axial springs. The two

materials are modeled as springs in parallel, while the structure length is

modeled as springs in series. An example structure and model are shown in

Figure 17. The materials are assumed elasto-plastic.

Consider the structure excited by a random blast input defined by

P - A + de where P is the pressure history. The peak pressure A' = A+B is

a normally distributed random variable with mean 1280 psi (8.8 MPa) and stan-

dard deviation 102 psi (0.7 MPa), B -1.069A, and a is a normally distributed

random variable with mean 0.80 and standard deviation 0.2 t as time.

The peak response, taken here as strain, at point C (Fig. 17) has been

predicteo for the mean values of the input using a numerical approximation to

the solution of Equation 69 (Ref. 53). Additionally the peak responses near

the means provide partial differential quotients to approximate the partial

differentials in Equation 72b. The results obtained are

Zlii = 2.12 (Ji-3);

a Z/@A I 0.429 (10-3);

3 Z/3a -0.300 (10-3);

and P is assumed 0.1.

Using Equations 72a and b, the mean and variance of Z become 2.12 (10-3)

and 9.0 (10-8). Let L be the strain at which failure occurs and define the

mean of L as 0.002 and 2.5 (10-7), respectively. From the above development,

tne mean ard variance of M, the margin of survival, become um = 1.2 (10-4) and

V 3 3.4 (1J )-).
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______Mass M, M2

K, K2  K3

Elasto-plastic M

springs
K.4. KS

K26 K27

MIS

K28

=0

Figure 17. Structure with spring mass model.
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Assuming a normal distribution for Z and L gives the probability of sur-

vival as

PS *-, 1.2 (10- 4) = 41.8%

5.8 ( 10- )

where * is the standard normal cumulative distribution function.

In the present application, sufficient accuracy was obtained using the

first two terms in tne Taylor series (Equation 71). More complicated situa-

tions may require inclusion of additional terms.

c. Failure at multiple points--Note the possibility of multiple point

failure. That is, the probability of structural failure, given that it could

conceivably fail at any of a number of locations, N. If the failure level at

one location is independent of failure at other locations, then the solution

is simple. If, however, the failure level at one location is correlated to

failure at other locations, the correlation coefficient for the failure levels

must be given and the correlation for the margin of survival between locations

must be determined.

The correlation coefficient for the margin of survival at any two loca-

tions, X and m, can be computed:

M Cov [MY, Hin]
, (77)

V VL'I& J VU~m7

Note that Cov[M., M,] = E[fM Mm] - E[MtJ E[Mm]

sE[(Z& - Lt)(Zm - Lm)] - E[M]E[Mm]

E[Z Zm] + ECLLjL m] - E[ZtLm] - E[LZm] - ErMt]VMm]
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No0w

E[XM] 0 InV[]VL m7+ECI E[L 111

wnere

L.
P ,m is the specified correlation coefficient between the failure

levels at locations A or m

and

t[ZL L J=ECZ J CL I
I m In

E[Ltzm] = E(L] E[Zm] by independence.

Combining the above gives:

Zz(0' Zm (MA + Pjk Oj Ok InL±

+ P
9 . 1n/V[LJ V[Lm] + L[L 1] E[Lm] - E[ZI] E[LmJ

[ mj ECLL E(M. t[ (78)

wnich contains only previously determined or specified elements.

Failure occurs wnen tne margin of survival is negative, and the probabil-

ity of failure can therefore oe approximated by

N N•-
Pf= P Mi < 0 P(Mi < O) - :P(Mi < 0 M < O)

" i =i *j."

- M*) (79)"':-.'. +'* "P i= i i'

wnere N is the number of failure points considered.
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This series may be approximated by truncating the series of summations

after several terms. The problem then becomes

( ins M 0 (80)

where s is a subset of the set [I, 2,***, N}. This expression can be

evaluated by executing the n-fold integral of the nth order normal pdf of Xj,

j-l,..., n. (Assume that the set s contains n components and these are

denoted X., j=l,..., n.)
3

The nt h order normal joint pdf Is

PM1 6.*' Mn (xi , xn)

2 i.1 j=1  r

- -< xi  < -, 1 , ... , n (81)

where ISI is the covariance matrix of the Xi, j-l, -, n, ISI is the

determinant of ISI, rij is the cofactor of the i throw, th column element in

IS'.

In terms of Equation 81, the expression 80 is written

o o
P i o) =fJdm, " ' /*O .. ,fr M'** Mn(mL, ""'

0
n n

Jdmi. gd
exp (x1 -w1 ) rj (xju) (82)

i-i Jul

92

-* - . . . . . . . . . ..,



The integral can be modified through a change of variables

i " . i=1, .. , n (83)
ai 

,

to obtain

II O = f. Yn 2w)n/2 i1/2f Mi<dy 1 , -.- ayUnan o, **, %

i 1 n n
exp . E Oj Y rij jrj) (84)

i= 1 j=1 

(

The integral can be further modified by another change of variables

z - , i=1, .. , n (85)

This yields

0 0
P II mi  o)0 dz . .. dz n  01 On
P(1ics / . /n/ n (2 ,r)n/2 IS 11/ 2  z2 ... z

ia °, r i j (7j86
exp IF,) (86)

". J.1 Zi /i

This quantity can be evaluatec numerically.

9

V 93



SUBJECTED TO TRRNSIENT LO.. (U) NEWl MEXICO ENGINEERING
RESEARCH INST ALBUGUERGUE D MORRISON OCT 95

UNCLSSIFIED NNERI-TA F ULTR 4 4I54-PTF/C 0/3 ML

16 flllffflfflll



10 12.

B- U

1- 1-4 _(6

NATIONAL DURMA OF STANDARDS
MCpoCocf RSOLUTMO TEST CHART

2k



In the present investigation, a Simpson's rule scheme is used to numeri-

cally evaluate the Integral. Each of the integrals evaluated in Equation 86

is an element in one of the sums on the right side of Equation 79.

Thus, using EfM1], VCM1j, and a the probability of failure can be

obtained.

d. Numerical example--A nine degree-of-freedom spring mass system that

models a structure responding only axially has been selected to illustrate the

analytical procedure (Fig. 18).

F 1 2 3 4 5 6 7 8 9 .. ,.

Note: All masses are 1000 kg.

Figure 18. Spring mass system.

The system has elasto-plastic springs. Two of the springs near the

center (springs 5 and 6) exhibit yield at their mean values at lower levels

tnan do tne otners. The forcing function is exerted on the first mass as

shown in Figure 18 and is a decaying exponential of the form F 2 A + Be

Three of the parameters that descrioe the system and two that describe the

applied force were identified as random. The random variable parameters (mean

and variance) and the correlation coefficients between sets of random I.

variables are shown In Table 7.
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The proolen was constructed so that at the mean values of the parameters,

the maximum strain in the system would result in a ductility ratio of about

1U.

The partial quotients (that estimate the partial derivatives of the

*response measure with respect to each of the random parameters) were obtained

by a series of deterministic calculations in which the random parameters were

varied. The deterministic approach was the numerical solution used in the

previous example.

TABLE 7. KANUOM PARA4ETERS

kandom Variables Mean Variance Correlation Coefficients
C, CZ A+8 '

Spring constant,. 1.00E10 1.00E18 0.1 0.1 0 0
all springs, K.

Yield limit, I.0OE08 1.uOE14 0.85 0 0
springs 1-4, 7-9, C1

Yield limits, 8.0EO7 7.23E13 0 0
springs 5, 6, C2

Peak applied force, A+8 1.0008 1.00E14 0.9

Uecay coefficient, a 15 2.25

I.--
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Five locations wre selected as potential failure points; one near the

loading (spring 2), two at the low-yield springs (springs 5 and 6), and two

near the bottom (springs 8 and 9). The failure level at each point was

considered as random; the means and the variances are shown in Table 8. The

correlation coefficients between the failure levels at the various points were

also estimated and are shown in the table.

TABLE 8. FAILURE LEVEL MEAN AND VARIANCE

Location Mean Variance Correlation Coefficients

(Spring ,Number) 5 6 8 9

2 0.06 3.6E-05 0.1 0.1 0.3 0.3 .
5 0.09 8,1E-05 0.8 0.1 0.1

6 o.u9 8.1E-05 0.1 0.1

8 0.06 3.6E-05 0.7

90.06 3.6E-05

£quations 74 and 75 have been used to estimate the mean and variance of

the margin of survival at each location. Equation 78 estimates the

correlation coefficients between the margins of survival at the various

points. This information has been used as input in an approximation of the

multivariate normal distribution, and a numerical form of Equation 79 has been

useo to compute the probability of system failure. The analysis shows a

failure probability of 56.4 percent.
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In summary, this section hlas Shown the development of an approach that

predicts the reliability of MiUF systems that can fail at any of a number of

locations. The random nature of the structural system and the load have been

addressed. In addition, the failure level has been considered as a random S, ,

property. The development is general in that the random parameters are

treated as correlated rather than independent.
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IV. DEVELOPMENT OF A STOCHASTIC FINITE ELEMEAT COCE

1. INTkODUCTION

The previous section addressed the use of a deterministic finite element

code to calculate tne mean and to approximate the variance of selected

response measures for nonlinear problems with random input and material pro-

perties. The approach required repetitive calculations to estimate tne mean

and the behavior near the mean so that the variance could be estimated. Since

nonlinear, dynamic problems are random processes it would be more useful to

nave an approacn that tracKs tne evolution of tne random behavior of response

measures witn time. This section addresses such an approacn. The equations

in a typical numerical approach may be used to compute the variance and covar-

iance of various response parameters; but this section carries the results

only as far as the random description of the response measures. The extension [
for prooabilistic failure analysis is the same as for the previous section. ' T

2. THEORETICAL DEVELOPMENT

Consiaer a one-dimensional nonlinear finite element algoritm which

proceeds as follows. The acceleration at location i and at tne jtn time step

is

98 H
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where

a -acceleration

F - applied force

F1 - internal force

m a mass

superscript i is a spatial index

subscript j is a time index

The velocity, V, at location it time step j, for a at time step is

V aV aat
Ji-i1

and the displacement, d, becomes

di d i i a

j 1 i ij

Using a simple definition of strain based on the original length, Z., the

strain e becomes

i+1 i
d. -d

and stress, a, is addressed in some nonlinear,-inelastic relationship to

IF, strain

m_ j-1 )
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where em and om~e m are memory parameters (from the last time step) that are
I j-1

usually required for path dependent models. E and other parameters are the

moduli and strains that are used in the functional form of the nonliner

model.

An example of a nonlinear model (used in subsequent calculations in this

report) is a two-modulus elastic-plastic model that unloads on the elastic

modulus. For strains less than some specified strain c , the material model

is elastic with modulus E, that is

a ik
.3 .3_

wnen strains lie in the range c < e ( C2, then a second modulus, E2, becomes

effective and

= E2

and when tne strain exceeds £2 the material is plastic with

.3aj Eel + (el-ez)E2 -.

This particular model can treat unloading differently than loading and thus

dissipate energy. This treatment requires memory parameters. The memory

parameters are the maximum stress and strain attained, so that at unload the

stress can be computed from

i m• i / i ei\
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The last computation for a time step in this finite element process is

the calculation of the internal force FI for the next time step.

FI - - i A"•

where

A - cross section area of the element

0.

After all elements, i = . . .N, and nodes, i 1 1---N + 1, are updated, the

information generated at j is used to compute the response at j + 1.

The fact that all the memory required for calculation of the response

measures for the current time step lies in the previous time step information

indicates that this may be a Markov Process. A Markov Process is one in whicn

the properties of a random process can le computed given the state at a pre-

vious time and the time since that state. The random properties of each of

the response measure parameters can be computed from the previous time step

data. For example the first output measure of interest that is computed by

the deterministic algorithm is the velocity

= ! -1 +aatVj = j-I A ..

but

F - FI -1,-.

so that ":-:

V + ( F A
vj;K 1 (- - F. 1) -M~tO

p707



Assuming that V and FI1  are random variables, the properties of z
which were computed last time step and that F~ Iis a randomn variable, the

properties of which describe the loading function, then

E1V_i], VarLjJ ELFIj 1]' VarLFIj 1]' EIJ. Var[F'J.

and

Coy [v'_,Fl 1

are known. Then

E Vj E E[Vj,.. + (F FIJ.1 ~.

-deterministic calculation with mean values

Var i]uv] E[ V]

C~JJ [Vj~ . jp - ) At]

E[212(+ F F 1  v1

12 &2 I i .ij

E F V F
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so that

Var[V!,] uVar[VI..i 2 &t.~ COVIV~ ~I! ~]+ Var[Fi] + War 1

It is apparent that it will be necessary to compute

for the next time step and that will be calculated when F1i~ is found.

The displaced mean and variance are

E[d] E~djI + V'at]

-deterministic calculations using rooan values

Var1Id'] -E[dj2] -E[d']2

[d- i 2 Io ' T_E~d Va*', 2&tCov [_V

+Var Vd JL-~JI O

The equations for the random properties for the remaining parameters in the

one-dimensional finite element algorithm have been developed and are available

in the computer program found in the Appendix. The program computes the evolu-

tion of the multivariate random distribution of the response measures, includ-

ing mean and variance for each parameter and covariance between parameters.
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Now, if a normal or a lognormal distribution is selected to represent the

form of the distribution, then the parameters exist to completely define the

distribution at any time step. .-

Even tnougn tne response measures form a multivariate distribution and

integration would require an n-fold integration scheme, the marginal prob-

ability density functions can be assumed to be normal or lognormal if the

joint prooability density is likewise normal or lognormal, so that some

information can be obtained from the marginal density functions. .

3. NUMEICAL EXAMPLE

A bar 5 m long, with properties as snown in Table 9, is subjected to a

decaying exponential load of the form

F = Q j

where

A 4.15 mPa

a 1000

t - time in seconds

The above problem has been solved using a finite element procedure witn A

as a randoon parameter with mean 4.15 and standard deviation 0.4. Response

measures of the first two nodes are shown in Figures 19 through 22. A one-

standard deviation bound on the mean is shown for each parameter. A second

problem is solved whicn includea random material properties as shown in Table

10. Tnis solution is also shown on Figures 19 through 22. . 4-
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TABLE 9. PROPERTIES OF BAR

Area 0.01 m2

Density - 7840 kg/m 3

E, a 2 E+11 Pa = -0.022

7 Ez = 1 E+11 Pa * -0.005

where E1. E2, .1, and are defined

by the following:

0"

4A

C 1 e2

1o..

Strain (compression)

The model unloads on the initial modules, E.

TABLE 10. RANDOM MATERIAL PROPERTIES

_ __Standard L
Parameter Mean, Pa deviation, Pa

Et  2 E+11 2 E+10

E2 1 E+11 1 E+1O

El -0.002 0.0002

-0.005 0.0001
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V. CONCLUSIONS ANO RECO4MENDATIONS

1. CONCLUSIONS

Procedures nave been developed to compute the probability of failure of

structures subjected to blast and shock loads. The requirements are as

follows:

a. The characteristics of the random load must be specified.

b. The structure system parameters tnat are considered random must be

adequately specified.

c. Ueterministic tools to compute the response must be availaDle.

a. The random nature of the failure criteria must be characterized.

There are limitations to the presented approaches. For the approach

presented for SiF systems, the computational storage requirement is quite

large. Methods to reduce the requirenwits rely on narrow band response

assumptions which are not correct for highly nonlinear systems. The

discretization of response space introduces further numerical error and must

oe carefully selected with respect to time step and response measure nistory

results.

The one approach presented for MOF representations is limited by the

requirement to truncate the Taylor series at a reasonable order so as to limit

tne number of deterministic calculations that mu .t be run to provide the

numerical approximations of the partial differences. This truncation has been

at the linear terms for the example problems, and is adequate as long as the
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distribution of the response about its mean is narrow enough so that the

linear approximation is adequate. Otherwise higher order terms must be main-

tained. The linear terms can be adequate for nonlinear response if the peak

range over which the linear approximation is used accounts for a significant

portion of the peak response distribution. That is, for reasonable bounds on

the peakc response distribution, the peak response function must be linear in

the random parameters.

The second MUF approach (finite element) would require extensive develop-

ment for two-dimensional problems.

The approacnes do not address model uncertainty. Model uncertainty

snould not be addressed witn a random property approach and appropriate pro-

ceaures are outside the scope of this report.
1l.-

In practical application of the approaches developed in this investiga-

tion, the most severe limitation is an inadequate data base from which to

establisn random character of the loads, the structure system parameters, and

tne failure criteria. Testing is very expensive because of the nature of the

loads; ana reasonable tests provide some damage to the structure, making them

difficult to repeat. Further definition of what can be correctly addressed as

a random variaole is neeaed.

2. EXTENSIONS

The most useful steps beyond this study include:

a. more thorough criteria for determining the order of truncation of the

Taylor series. This would be developed mostly by extensive experience with a

variety of oroblems.

p.. p ~. . . . .-*...- .. :* -.-.~



b. The one-dimensional finite element model could be expanded to two-

dimension, It may be necessary to approximate some of the relationships to

keep the development to a manageable state. More experience with the one-

dimensional model would be helpful.

c. The distribution of response measures could be used to validate

whetner a aeterministic model could produce random response for random inputs

in the same way as it does for the real system. For example, given a reason-

able random Input loading, both a mathematical model and a test could be

conducted for concrete specimens. The distribution of the strain from both

could oe compared to validate tne mathematical model. Because of tne complex

stress/strain paths that are investigated, normalization of data along path

segments would probaoly be required.

t '...
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